• Allen, D. J., , Douglass A. R. , , Rood R. B. , , and Guthrie P. D. , 1991: Application of a monotonic upstream-biased transport scheme to three-dimensional constituent transport calculations. Mon. Wea. Rev., 119, 2456–2464, doi:10.1175/1520-0493(1991)119<2456:AOAMUB>2.0.CO;2.

  • Barthès, L., , and Mallet C. , 2013: Rainfall measurement from opportunistic use of earth-space link in Ku Band. Atmos. Measur. Tech. Discuss., 6, 21132150, doi:10.5194/amtd-6-2113-2013.

    • Search Google Scholar
    • Export Citation
  • Bianchi, B., , Jan van Leeuwen P. , , Hogan R. J. , , and Berne A. , 2013: A variational approach to retrieve rain rate by combining information from rain gauges, radars, and microwave links. J. Hydrometeor., 14, 18971909, doi:10.1175/JHM-D-12-094.1.

    • Search Google Scholar
    • Export Citation
  • Chwala, C., and et al. , 2012: Precipitation observation using microwave backhaul links in the alpine and pre-alpine region of southern Germany. Hydrol. Earth Syst. Sci., 16, 2647–2661, doi:10.5194/hess-16-2647-2012.

    • Search Google Scholar
    • Export Citation
  • Delrieu, G., , Boudevillain B. , , Nicol J. , , Chapon B. , , Kirstetter P.-E. , , Andrieu H. , , and Faure D. , 2009: Bollène-2002 Experiment: Radar quantitative precipitation estimation in the Cévennes–Vivarais region, France. J. Appl. Meteor. Climatol., 48, 14221447, doi:10.1175/2008JAMC1987.1.

    • Search Google Scholar
    • Export Citation
  • Desa, M., , and Niemczynowicz J. , 1997: Dynamics of short rainfall storms in a small scale urban area in Coly Limper, Malaysia. Atmos. Res., 44, 293315, doi:10.1016/S0169-8095(97)00017-3.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., and et al. , 2013: HyMeX, le cycle de l’eau méditerranéen à la loupe. Meteorologie, 80, 2336, doi:10.4267/2042/48792.

    • Search Google Scholar
    • Export Citation
  • Gilbert, J. C., , and Lemaréchal C. , 2006: The module M1QN3. INRIA Rep., version 3.3, 21 pp.

  • Giuli, D., , Toccafondi A. , , Biffi Gentili G. , , and Freni A. , 1991: Tomographic reconstruction of rainfall fields through microwave attenuation measurements. J. Appl. Meteor., 30, 13231340, doi:10.1175/1520-0450(1991)030<1323:TRORFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giuli, D., , Facheris L. , , and Tanelli S. , 1999: Microwave tomographic inversion technique based on stochastic approach for rainfall fields monitoring. IEEE Trans. Geosci. Remote Sens., 37, 25362555, doi:10.1109/36.789649.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 364 pp.

  • Leijnse, H., , Uijlenhoet R. , , and Stricker J. , 2008: Microwave link rainfall estimation: Effects of link length and frequency, temporal sampling, power resolution, and wet antenna attenuation. Adv. Water Resour., 31, 14811493, doi:10.1016/j.advwatres.2008.03.004.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., , and Schertzer D. , 1990: Multifractals, universality classes and satellite and radar measurements of cloud and rain fields. J. Geophys. Res., 95, 2021–2034, doi:10.1029/JD095iD03p02021.

  • Maitra, A., , and Chakravarty K. , 2005: Ku-band rain attenuation observations on an earth–space path in the Indian region. Proc. XXVIIIth General Assembly, URSI, New Delhi, India, F01.4(0650)]. [Available online at http://www.ursi.org/Proceedings/ProcGA05/pdf/F01.4%280650%29.pdf.]

  • Molinié, G., , Ceresetti D. , , Anquetin S. , , Creutin J. D. , , and Boudevillain B. , 2012: Rainfall regime of a mountainous Mediterranean region: Statistical analysis at short time steps. J. Appl. Meteor. Climatol., 51, 429–448, doi:10.1175/2011JAMC2691.1.

    • Search Google Scholar
    • Export Citation
  • Nardi, L., , Sorror C. , , Badran F. , , and Thiria S. , 2009: YAO: A software for variational data assimilation using numerical models. Computational Science and Its Applications—ICCSA 2009, O. Gervasi et al. Eds., Lecture Notes in Computer Science, Vol. 5593, 621–636.

  • Navon, I. M., 2009: Data assimilation for numerical weather prediction: A review. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Vol. 1, Springer, 21–65.

  • Overeem, A., , Leijnse H. , , and Uijlenhoet R. , 2013: Country-wide rainfall maps from cellular communication networks. Proc. Natl. Acad. Sci. USA, 110, 27412745, doi:10.1073/pnas.1217961110.

    • Search Google Scholar
    • Export Citation
  • Schleiss, M., , and Berne A. , 2010: Identification of dry and rainy periods using telecommunication microwave links. IEEE Geosci. Remote Sens. Lett., 7, 611615, doi:10.1109/LGRS.2010.2043052.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1983: A simple positive definite advection scheme with small implicit diffusion. Mon. Wea. Rev., 111, 479486, doi:10.1175/1520-0493(1983)111<0479:ASPDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tabary, P., 2007: The new French operational radar rainfall product. Part I: Methodology. Wea. Forecasting, 22, 393408, doi:10.1175/WAF1004.1.

    • Search Google Scholar
    • Export Citation
  • Thiria, S., , Badran F. , , and Sorror C. , 2006: Yao: Un logiciel pour les modèles numériques et lassimilation de données. LOCEAN Research Rep., 60 pp.

  • Verrier, S., , De Montera L. , , Barthès L. , , and Mallet C. , 2010: Multifractal analysis of African monsoon rain fields, taking into account the zero rain-rate problem. J. Hydrol., 389, 111120, doi:10.1016/j.jhydrol.2010.05.035.

    • Search Google Scholar
    • Export Citation
  • Zinevich, A., , Alpert P. , , and Messer H. , 2008: Estimation of rainfall fields using commercial microwave communication networks of variable density. Adv. Water Resour., 31, 14701480, doi:10.1016/j.advwatres.2008.03.003.

    • Search Google Scholar
    • Export Citation
  • Zinevich, A., , Messer H. , , and Alpert P. , 2009: Frontal rainfall observation by a commercial microwave communication network. J. Appl. Meteor. Climatol., 48, 13171334, doi:10.1175/2008JAMC2014.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 111 111 8
PDF Downloads 62 62 1

Estimation of Finescale Rainfall Fields Using Broadcast TV Satellite Links and a 4DVAR Assimilation Method

View More View Less
  • 1 Université de Versailles Saint-Quentin-en-Yveline,Versailles, and Sorbonne Universites, UPMC University Paris 06, Paris, and CNRS/INSU, LATMOS-IPSL, Guyancourt, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study proposes a method based on the use of a set of commercial satellite-to-Earth microwave links to rebuild finescale rainfall fields. Such microwave links exist all over the world and can be used to estimate the integrated rain attenuation over the links’ first 5–7 km with a very high temporal resolution (10 s in the present case). The retrieval algorithm makes use of a four-dimensional variational data assimilation (4DVAR) method involving a numerical advection scheme. The advection velocity is recovered from the observations or from radar rainfall fields at successive time steps.

This technique has been successively applied to simulated 2D rain maps and to real data recorded in the autumn of 2013 during the Hydrological Cycle in the Mediterranean Experiment (HyMeX), with one sensor receiving microwave signals from four different satellites. The performance of this system is assessed and is compared to an operational Météo-France radar and a network of 10 rain gauges. Because of the limitations of the propagation model, this study is limited to the events with strong advective characteristics (four out of eight recorded events). For these events (only), the method produces rainfall fields that are highly correlated with the radar maps at spatial resolutions greater than . The point-scale results are also satisfactory for temporal resolutions greater than 10 min (mean correlation with rain gauge data equal to approximately 0.8, similar to the correlation between radar and rain gauge data).

This method can also be adapted to the fusion of a rain gauge with microwave link measurements and, through the use of several sensors, it has the potential of being applied to larger areas.

Corresponding author address: François Mercier, LATMOS, 11 Boulevard d’Alembert, 78280 Guyancourt, France. E-mail: francois.mercier@latmos.ipsl.fr

Abstract

This study proposes a method based on the use of a set of commercial satellite-to-Earth microwave links to rebuild finescale rainfall fields. Such microwave links exist all over the world and can be used to estimate the integrated rain attenuation over the links’ first 5–7 km with a very high temporal resolution (10 s in the present case). The retrieval algorithm makes use of a four-dimensional variational data assimilation (4DVAR) method involving a numerical advection scheme. The advection velocity is recovered from the observations or from radar rainfall fields at successive time steps.

This technique has been successively applied to simulated 2D rain maps and to real data recorded in the autumn of 2013 during the Hydrological Cycle in the Mediterranean Experiment (HyMeX), with one sensor receiving microwave signals from four different satellites. The performance of this system is assessed and is compared to an operational Météo-France radar and a network of 10 rain gauges. Because of the limitations of the propagation model, this study is limited to the events with strong advective characteristics (four out of eight recorded events). For these events (only), the method produces rainfall fields that are highly correlated with the radar maps at spatial resolutions greater than . The point-scale results are also satisfactory for temporal resolutions greater than 10 min (mean correlation with rain gauge data equal to approximately 0.8, similar to the correlation between radar and rain gauge data).

This method can also be adapted to the fusion of a rain gauge with microwave link measurements and, through the use of several sensors, it has the potential of being applied to larger areas.

Corresponding author address: François Mercier, LATMOS, 11 Boulevard d’Alembert, 78280 Guyancourt, France. E-mail: francois.mercier@latmos.ipsl.fr
Save