On Shipboard Marine X-Band Radar Near-Surface Current ‘‘Calibration’’

Björn Lund Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Björn Lund in
Current site
Google Scholar
PubMed
Close
,
Hans C. Graber Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Hans C. Graber in
Current site
Google Scholar
PubMed
Close
,
Katrin Hessner OceanWaveS GmbH, Lüneburg, Germany

Search for other papers by Katrin Hessner in
Current site
Google Scholar
PubMed
Close
, and
Neil J. Williams Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Neil J. Williams in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ocean wave signatures within conventional noncoherent marine X-band radar (MR) image sequences can be used to derive near-surface current information. On ships, an accurate near-real-time record of the near-surface current could improve navigational safety. It could also advance understanding of air–sea interaction processes. The standard shipboard MR near-surface current estimates were found to have large errors (of the same order of magnitude as the signal) that are associated with ship speed and heading. For acoustic Doppler current profilers (ADCPs), ship heading errors are known to induce a spurious cross-track current that is proportional to the ship speed and the sine of the error angle. Conventional mechanical gyrocompasses are very reliable heading sensors, but they are too inaccurate for shipboard ADCPs. Within the ADCP community, it is common practice to correct the gyrocompass measurements with the help of multiantenna carrier-phase differential GPS systems. This study shows how a similar multiantenna GPS-based ship heading correction technique stands to improve the accuracy of MR near-surface current estimates. Changes to the standard MR near-surface current retrieval method that are necessary for high-quality results from ships are also introduced. MR and ADCP data collected from R/V Roger Revelle during the Impact of Typhoons on the Ocean in the Pacific (ITOP) program in 2010 are used to demonstrate the MR currents’ accuracy and reliability.

Corresponding author address: Björn Lund, Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: blund@rsmas.miami.edu

Abstract

The ocean wave signatures within conventional noncoherent marine X-band radar (MR) image sequences can be used to derive near-surface current information. On ships, an accurate near-real-time record of the near-surface current could improve navigational safety. It could also advance understanding of air–sea interaction processes. The standard shipboard MR near-surface current estimates were found to have large errors (of the same order of magnitude as the signal) that are associated with ship speed and heading. For acoustic Doppler current profilers (ADCPs), ship heading errors are known to induce a spurious cross-track current that is proportional to the ship speed and the sine of the error angle. Conventional mechanical gyrocompasses are very reliable heading sensors, but they are too inaccurate for shipboard ADCPs. Within the ADCP community, it is common practice to correct the gyrocompass measurements with the help of multiantenna carrier-phase differential GPS systems. This study shows how a similar multiantenna GPS-based ship heading correction technique stands to improve the accuracy of MR near-surface current estimates. Changes to the standard MR near-surface current retrieval method that are necessary for high-quality results from ships are also introduced. MR and ADCP data collected from R/V Roger Revelle during the Impact of Typhoons on the Ocean in the Pacific (ITOP) program in 2010 are used to demonstrate the MR currents’ accuracy and reliability.

Corresponding author address: Björn Lund, Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: blund@rsmas.miami.edu
Save
  • Alpers, W. R., Ross D. B. , and Rufenach C. L. , 1981a: On the detectability of ocean surface waves by real and synthetic aperture radar. J. Geophys. Res., 86, 64816498, doi:10.1029/JC086iC07p06481.

    • Search Google Scholar
    • Export Citation
  • Alpers, W. R., Schröter J. , Schlude F. , Müller H.-J. , and Koltermann K. P. , 1981b: Ocean surface current measurements by an L band two-frequency microwave scatterometer. Radio Sci., 16, 93100, doi:10.1029/RS016i001p00093.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., 1968: A review of scattering from surfaces with different roughness scales. Radio Sci., 3, 865868.

  • Bell, P. S., 1999: Shallow water bathymetry derived from an analysis of X-band marine radar images of waves. Coastal Eng., 37, 513527, doi:10.1016/S0378-3839(99)00041-1.

    • Search Google Scholar
    • Export Citation
  • Bell, P. S., and Osler J. C. , 2011: Mapping bathymetry using X-band marine radar data recorded from a moving vessel. Ocean Dyn., 61, 21412156, doi:10.1007/s10236-011-0478-4.

    • Search Google Scholar
    • Export Citation
  • Bell, P. S., Lawrence J. , and Norris J. V. , 2012: Determining currents from marine radar data in an extreme current environment at a tidal energy test site. 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS): Proceedings, IEEE, 7647–7650.

  • Bowditch, N., 2002: The American Practical Navigator: An Epitome of Navigation. Bicentennial ed. National Imagery and Mapping Agency, Publ. 9, 916 pp.

  • Croney, J., 1966: Improved radar visibility of small targets in sea clutter. Radio Electron. Eng., 32, 135147, doi:10.1049/ree.1966.0066.

    • Search Google Scholar
    • Export Citation
  • Dankert, H., Horstmann J. , and Rosenthal W. , 2003: Ocean wind fields retrieved from radar-image sequences. J. Geophys. Res., 108, 3352, doi:10.1029/2003JC002056.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., and Coauthors, 2014: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 14051418, doi:10.1175/BAMS-D-12-00104.1.

    • Search Google Scholar
    • Export Citation
  • Dean, R. G., and Dalrymple R. A. , 1991: Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering, Vol. 2, Prentice-Hall, 370 pp.

  • Dittmer, J., 1994: Use of marine radars for real time wave field survey and speeding up transmission/processing. Proceedings of the WMO/IOC Workshop on Operational Ocean Monitoring Using Surface Based Radars, MMROA 32, WMO/TD-694, 133137.

  • Drennan, W. M., Graber H. C. , Collins C. O. III, Herrera A. , Potter H. , Ramos R. J. , and Williams N. J. , 2014: EASI: An air–sea interaction buoy for high winds. J. Atmos. Oceanic Technol., 31, 13971409, doi:10.1175/JTECH-D-13-00201.1.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., Hinton A. A. , Prada K. E. , Hare J. E. , and Fairall C. W. , 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562, doi:10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ekman, V. W., 1905: On the influence of the Earth’s rotation on ocean-currents. Ark. Mat. Astron. Fys., 2, 153.

  • Firing, E., and Hummon J. M. , 2010: Shipboard ADCP measurements. GO-SHIP repeat hydrography manual: A collection of expert reports and guidelines. E. M. Hood, C. L. Sabine, and B. M. Sloyan, Eds., IOCCP Rep. 14, ICPO Publ. Series 134, Version 1, 11 pp.

  • Graber, H. C., Terray E. A. , Donelan M. A. , Drennan W. M. , Van Leer J. C. , and Peters D. B. , 2000: ASIS—A new air–sea interaction spar buoy: Design and performance at sea. J. Atmos. Oceanic Technol., 17, 708720, doi:10.1175/1520-0426(2000)017<0708:AANASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffiths, G., 1994: Using 3DF GPS heading for improving underway ADCP data. J. Atmos. Oceanic Technol., 11, 11351143, doi:10.1175/1520-0426(1994)011<1135:UGHFIU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ha, E.-C., 1979: Remote sensing of ocean surface current and current shear by HF backscatter radar. Stanford University Tech. Rep., 141 pp.

  • Hatten, H., Seemann J. , Horstmann J. , and Ziemer F. , 1998: Azimuthal dependence of the radar cross section and the spectral background noise of a nautical radar at grazing incidence. IGARSS ’98: 1988 IEE International Geoscience and Remote Sensing Symposium Proceedings, Vol. 5, IEEE, 24902492.

  • Hessner, K., Reichert K. , Nieto Borge J. C. , Stevens C. L. , and Smith M. J. , 2014: High-resolution X-band radar measurements of currents, bathymetry and sea state in highly inhomogeneous coastal areas. Ocean Dyn., 64, 989998, doi:10.1007/s10236-014-0724-7.

    • Search Google Scholar
    • Export Citation
  • Hill, R. J., 2005: Motion compensation for shipborne radars and lidars. NOAA Tech. Memo. OAR PSD 309, 32 pp.

  • Ijima, T., Takahashi T. , and Sasaki H. , 1964: Application of radars to wave observations. Coastal Eng. Proc., 30, 1022.

  • IOC, IHO, and BODC, 2003: GEBCO Digital Atlas. Centenary ed. British Oceanographic Data Centre, CD-ROM.

  • Joyce, T. M., 1989: On in situ “calibration” of shipboard ADCPs. J. Atmos. Oceanic Technol., 6, 169172, doi:10.1175/1520-0426(1989)006<0169:OISOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, B., and Cooper E. , 1993: Comparison of ship’s heading determined from an array of GPS antennas with heading from conventional gyrocompass measurements. Deep-Sea Res. I, 40, 22072216, doi:10.1016/0967-0637(93)90099-O.

    • Search Google Scholar
    • Export Citation
  • Ludeno, G., Orlandi A. , Lugni C. , Brandini C. , Soldovieri F. , and Serafino F. , 2014: X-band marine radar system for high-speed navigation purposes: A test case on a cruise ship. IEEE Geosci. Remote Sens. Lett., 11, 244248, doi:10.1109/LGRS.2013.2254464.

    • Search Google Scholar
    • Export Citation
  • Lund, B., Graber H. C. , and Romeiser R. , 2012: Wind retrieval from shipborne nautical X-band radar data. IEEE Trans. Geosci. Remote Sens., 50, 38003811, doi:10.1109/TGRS.2012.2186457.

    • Search Google Scholar
    • Export Citation
  • Lund, B., Graber H. C. , Xue J. , and Romeiser R. , 2013: Analysis of internal wave signatures in marine radar data. IEEE Trans. Geosci. Remote Sens., 51, 48404852, doi:10.1109/TGRS.2012.2230635.

    • Search Google Scholar
    • Export Citation
  • Lund, B., Collins C. O. III, Graber H. C. , Terrill E. , and Herbers T. H. C. , 2014: Marine radar ocean wave retrieval’s dependency on range and azimuth. Ocean Dyn., 64, 9991018, doi:10.1007/s10236-014-0725-6.

    • Search Google Scholar
    • Export Citation
  • Mueller, D. S., 2015: Velocity bias induced by flow patterns around ADCPs and associated deployment platforms. 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement (CWTM), IEEE, 55–61.

  • Nieto Borge, J. C., Reichert K. , and Dittmer J. , 1999: Use of nautical radar as a wave monitoring instrument. Coastal Eng., 37, 331342, doi:10.1016/S0378-3839(99)00032-0.

    • Search Google Scholar
    • Export Citation
  • Nieto Borge, J. C., Rodríquez Rodríguez G. , Hessner K. , and Izquierdo González P. , 2004: Inversion of marine radar images for surface wave analysis. J. Atmos. Oceanic Technol., 21, 12911300, doi:10.1175/1520-0426(2004)021<1291:IOMRIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nieto Borge, J. C., Hessner K. , Jarabo-Amores P. , and de la Mata-Moya D. , 2008: Signal-to-noise ratio analysis to estimate ocean wave heights from X-band marine radar image time series. IET Radar Sonar Navig., 2, 3541, doi:10.1049/iet-rsn:20070027.

    • Search Google Scholar
    • Export Citation
  • Oudshoorn, H. M., 1960: The use of radar in hydrodynamic surveying. Coastal Eng. Proc., 7, 59–76.

  • Pollard, R., and Read J. , 1989: A method for calibrating shipmounted acoustic Doppler profilers and the limitations of gyro compasses. J. Atmos. Oceanic Technol., 6, 859865, doi:10.1175/1520-0426(1989)006<0859:AMFCSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, E. A., and Niiler P. P. , 1999: Wind-driven currents in the tropical Pacific. J. Phys. Oceanogr., 29, 21212129, doi:10.1175/1520-0485(1999)029<2121:WDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramos, R. J., Lund B. , and Graber H. C. , 2009: Determination of internal wave properties from X-band radar observations. Ocean Eng., 36, 10391047, doi:10.1016/j.oceaneng.2009.07.004.

    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., and Wang D. W. C. , 2007: Directional validation of wave predictions. J. Atmos. Oceanic Technol., 24, 504520, doi:10.1175/JTECH1990.1.

    • Search Google Scholar
    • Export Citation
  • Senet, C. M., Seemann J. , and Ziemer F. , 2001: The near-surface current velocity determined from image sequences of the sea surface. IEEE Trans. Geosci. Remote Sens., 39, 492505, doi:10.1109/36.911108.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. H., and Joy J. W. , 1974: HF radio measurements of surface currents. Deep-Sea Res. Oceanogr. Abstr., 21, 10391049, doi:10.1016/0011-7471(74)90066-7.

    • Search Google Scholar
    • Export Citation
  • Teague, C., 1986: Multifrequency HF radar observations of currents and current shears. IEEE J. Oceanic Eng., 11, 258269, doi:10.1109/JOE.1986.1145178.

    • Search Google Scholar
    • Export Citation
  • Teledyne RD Instruments, 2011: Acoustic Doppler current profiler: Principles of operation; A practical primer. 2nd ed. P/N 951-6069-00, 56 pp.

  • Thales Navigation, 2000: ADU3 operation and reference manual. Part 630869, Rev. A, 200 pp.

  • Trizna, D. B., Hansen J. P. , Hwang P. , and Wu J. , 1991: Laboratory studies of radar sea spikes at low grazing angles. J. Geophys. Res., 96, 12 52912 537, doi:10.1029/91JC00705.

    • Search Google Scholar
    • Export Citation
  • Valenzuela, G. R., 1978: Theories for the interaction of electromagnetic and oceanic waves – A review. Bound.-Layer Meteor., 13, 6185, doi:10.1007/BF00913863.

    • Search Google Scholar
    • Export Citation
  • Van Graas, F., and Braasch M. , 1991: GPS interferometric attitude and heading determination: Initial flight test results. Navigation, 38, 297316, doi:10.1002/j.2161-4296.1991.tb01864.x.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., 1982: The relation of near-inertial motions observed in the mixed layer during the JASIN (1978) experiment to the local wind stress and to the quasi-geostrophic flow field. J. Phys. Oceanogr., 12, 11221136, doi:10.1175/1520-0485(1982)012<1122:TRONIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wetzel, L. B., 1990: Electromagnetic scattering from the sea at low grazing angles. Surface Waves and Fluxes: Volume II—Remote Sensing, G. L. Geernaert and W. L. Plant, Eds, Environmental Fluid Mechanics Series, Vol. 8, Kluwer, 109–171.

    • Search Google Scholar
    • Export Citation
  • Wright, J., 1968: A new model for sea clutter. IEEE Trans. Antennas Propag., 16, 217223, doi:10.1109/TAP.1968.1139147.

  • Yoshikawa, Y., and Masuda A. , 2009: Seasonal variations in the speed factor and deflection angle of the wind-driven surface flow in the Tsushima Strait. J. Geophys. Res., 114, C12022, doi:10.1029/2009JC005632.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., Rosenthal W. , and Ziemer F. , 1985a: A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents. J. Geophys. Res., 90, 10491059, doi:10.1029/JC090iC01p01049.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., Rosenthal W. , and Ziemer F. , 1985b: Marine radar measurements of waves and currents during turning winds. Ocean Dyn., 38, 2338.

    • Search Google Scholar
    • Export Citation
  • Ziemer, F., 1994: An instrument for the survey of the directionality of the ocean wave field. Proceedings of the WMO/IOC Workshop on Operational Ocean Monitoring Using Surface Based Radars, MMROA 32, WMO/TD-694, 81–87.

  • Ziemer, F., and Dittmer J. , 1994: A system to monitor ocean wave fields. Oceans ’94: Oceans Engineering for Today’s Technology and Tomorrow’s Preservation: Proceedings, Vol. 2, IEEE, 2831.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1174 275 16
PDF Downloads 791 221 8