• Aagaard, T., , and Greenwood B. , 1994: Suspended sediment transport and the role of infragravity waves in a barred surf zone. Mar. Geol., 118, 2348, doi:10.1016/0025-3227(94)90111-2.

    • Search Google Scholar
    • Export Citation
  • Almeida, L. P., , Masselink G. , , Russell P. E. , , Davidson M. , , Poate T. , , Mccall R. , , Blenkinsopp C. , , and Turner I. L. , 2013: Observations of the swash zone on a gravel beach during a storm using a laser-scanner (Lidar). J. Coastal Res., 65, 636641, doi:10.2112/SI65-108.1.

    • Search Google Scholar
    • Export Citation
  • Apotsos, A., , Raubenheimer B. , , Elgar S. , , and Guza R. T. , 2008: Wave-driven setup and alongshore flows observed onshore of a submarine canyon. J. Geophys. Res., 113, C07025, doi:10.1029/2007JC004514.

    • Search Google Scholar
    • Export Citation
  • Baldock, T. E., , and Simmonds D. J. , 1999: Separation of incident and reflected waves over sloping bathymetry. Coastal Eng., 38, 167176, doi:10.1016/S0378-3839(99)00046-0.

    • Search Google Scholar
    • Export Citation
  • Battjes, J. A., 1975: Surf similarity. Proceedings of the 14th Conference on Coastal Engineering, Vol. 1, ASCE, 466480.

  • Battjes, J. A., , and Stive M. J. F. , 1985: Calibration and verification of a dissipation model for random breaking waves. J. Geophys. Res., 90, 91599167, doi:10.1029/JC090iC05p09159.

    • Search Google Scholar
    • Export Citation
  • Beach, R. A., , and Sternberg R. W. , 1988: Suspended sediment transport in the surf zone: Response to cross-shore infragravity motion. Mar. Geol., 80, 6179, doi:10.1016/0025-3227(88)90072-2.

    • Search Google Scholar
    • Export Citation
  • Blenkinsopp, C. E., , Mole M. A. , , Turner I. L. , , and Peirson W. L. , 2010: Measurements of the time-varying free-surface profile across the swash zone obtained using an industrial LIDAR. Coastal Eng., 57, 10591065, doi:10.1016/j.coastaleng.2010.07.001.

    • Search Google Scholar
    • Export Citation
  • Blenkinsopp, C. E., , Turner I. L. , , Allis M. J. , , Peirson W. L. , , and Garden L. E. , 2012: Application of LiDAR technology for measurement of time-varying free-surface profiles in a laboratory wave flume. Coastal Eng., 68, 15, doi:10.1016/j.coastaleng.2012.04.006.

    • Search Google Scholar
    • Export Citation
  • Bowen, A. J., , and Inman D. L. , 1971: Edge waves and crescentic bars. J. Geophys. Res., 76, 86628671, doi:10.1029/JC076i036p08662.

  • Brodie, K. L., , Slocum R. K. , , and McNinch J. E. , 2012: New insights into the physical drivers of wave runup from a continuously operating terrestrial laser scanner. 2012 Oceans, IEEE, 8 pp., doi:10.1109/OCEANS.2012.6404955.

    • Search Google Scholar
    • Export Citation
  • Bryan, K. R., , and Bowen A. J. , 1996: Edge wave trapping and amplification on barred beaches. J. Geophys. Res., 101, 65436552, doi:10.1029/95JC03627.

    • Search Google Scholar
    • Export Citation
  • Chang, H. K., 2002: A three-point method for separating incident and reflected waves over a sloping bed. China Ocean Eng., 16, 499512.

    • Search Google Scholar
    • Export Citation
  • Chang, H. K., , and Hsu T. W. , 2003: A two-point method for estimating wave reflection over a sloping beach. Ocean Eng., 30, 18331847, doi:10.1016/S0029-8018(03)00017-9.

    • Search Google Scholar
    • Export Citation
  • Doering, J. C., , and Bowen A. J. , 1995: Parameterization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis. Coastal Eng., 26, 1533, doi:10.1016/0378-3839(95)00007-X.

    • Search Google Scholar
    • Export Citation
  • Elgar, S., , and Guza R. T. , 1985a: Observations of bispectra of shoaling surface gravity waves. J. Fluid Mech., 161, 425448, doi:10.1017/S0022112085003007.

    • Search Google Scholar
    • Export Citation
  • Elgar, S., , and Guza R. T. , 1985b: Shoaling gravity waves: Comparisons between field observations, linear theory, and a nonlinear model. J. Fluid Mech., 158, 4770, doi:10.1017/S0022112085002543.

    • Search Google Scholar
    • Export Citation
  • Gillham, R. W., 1984: The capillary fringe and its effect on water-table response. J. Hydrol., 67, 307324, doi:10.1016/0022-1694(84)90248-8.

    • Search Google Scholar
    • Export Citation
  • Goda, Y., , and Suzuki Y. , 1977: Estimation of incident and reflected waves in random wave experiments. Proceedings of the 15th Coastal Engineering Conference, Vol. 1, ASCE, 828845.

  • Guza, R. T., , and Inman D. L. , 1975: Edge waves and beach cusps. J. Geophys. Res., 80, 29973012, doi:10.1029/JC080i021p02997.

  • Guza, R. T., , and Bowen A. J. , 1976: Resonant interactions for waves breaking on a beach. Proceedings of the 15th Conference on Coastal Engineering, Vol. 1, ASCE, 560579.

  • Guza, R. T., , and Thornton E. B. , 1982: Swash oscillations on a natural beach. J. Geophys. Res., 87, 483491, doi:10.1029/JC087iC01p00483.

    • Search Google Scholar
    • Export Citation
  • Guza, R. T., , and Thornton E. B. , 1985: Observations of surf beat. J. Geophys. Res., 90, 31613172, doi:10.1029/JC090iC02p03161.

  • Haas, K. A., , Svendsen I. A. , , Haller M. C. , , and Zhao Q. , 2003: Quasi-three dimensional modeling of rip current systems. J. Geophys. Res., 108, 3217, doi:10.1029/2002JC001355.

    • Search Google Scholar
    • Export Citation
  • Haller, M. C., , Dalrymple R. A. , , and Svendsen I. A. , 2002: Experimental study of nearshore dynamics on a barred beach with rip channels. J. Geophys. Res., 107, 3061, doi:10.1029/2001JC000955.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , Janssen T. T. , , Raubenheimer B. , , Shi F. , , Barnard P. , , and Jones I. , 2014: Observations of surfzone alongshore pressure gradients onshore of an ebb-tidal delta. Coastal Eng., 91, 251260, doi:10.1016/j.coastaleng.2014.05.010.

    • Search Google Scholar
    • Export Citation
  • Holman, R. A., , and Bowen A. J. , 1982: Bars, bumps and holes: Models for the generation of complex beach topography. J. Geophys. Res., 87, 457468, doi:10.1029/JC087iC01p00457.

    • Search Google Scholar
    • Export Citation
  • Holman, R. A., , and Sallenger A. H. , 1985: Setup and swash on a natural beach. J. Geophys. Res., 90, 945953, doi:10.1029/JC090iC01p00945.

    • Search Google Scholar
    • Export Citation
  • Holman, R., , Sallenger A. , , Lippmann T. , , and Haines J. , 1993: The application of video image processing to the study of nearshore processes. Oceanography, 6, 7885, doi:10.5670/oceanog.1993.02.

    • Search Google Scholar
    • Export Citation
  • Houser, C., , and Greenwood B. , 2007: Onshore migration of a swash bar during a storm. J. Coastal Res., 23, 114, doi:10.2112/03-0135.1.

    • Search Google Scholar
    • Export Citation
  • Houser, C., , Greenwood B. , , and Aagaard T. , 2006: Divergent response of an intertidal swash bar. Earth Surf. Processes Landforms, 31, 17751791, doi:10.1002/esp.1365.

    • Search Google Scholar
    • Export Citation
  • Howd, P. A., , and Holman R. A. , 1987: A simple model of beach foreshore response to long-period waves. Mar. Geol., 78, 1122, doi:10.1016/0025-3227(87)90065-X.

    • Search Google Scholar
    • Export Citation
  • Huntley, D. A., , Simmonds D. , , and Tatavarti R. , 1999: Use of collocated sensors to measure coastal wave reflection. J. Waterw. Port Coastal Ocean Eng., 125, 4652, doi:10.1061/(ASCE)0733-950X(1999)125:1(46).

    • Search Google Scholar
    • Export Citation
  • Jafari, A., , Cartwright N. , , and Nielsen P. , 2012: Manometer tubes for monitoring coastal water levels: New frequency response factors. Coastal Eng., 66, 3539, doi:10.1016/j.coastaleng.2012.03.010.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. S., 2007: Edge waves: theories past and present. Philos. Trans. Roy. Soc. London, 365A, doi:10.1098/rsta.2007.2013.

  • King, B. A., , Blackley M. W. L. , , Carr A. P. , , and Hardcastle P. J. , 1990: Observations of wave-induced setup on a natural beach. J. Geophys. Res., 95, 22 28922 297, doi:10.1029/JC095iC12p22289.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, N., , and Watson K. D. , 1987: Wave reflection and runup on smooth slopes. Coastal Hydrodynamics: Proceedings of a Conference Sponsored by the Waterway, Port, Coastal and Ocean Division of the American Society of Civil Engineers, R. A. Dalrymple, Ed., ASCE, 548–563.

  • Kobayashi, N., , and Jung H. , 2012: Beach erosion and recovery. J. Waterw. Port Coastal Ocean Eng., 138, 473483, doi:10.1061/(ASCE)WW.1943-5460.0000147.

    • Search Google Scholar
    • Export Citation
  • Lentz, S., , and Raubenheimer B. , 1999: Field observations of wave setup. J. Geophys. Res., 104, 25 86725 875, doi:10.1029/1999JC900239.

    • Search Google Scholar
    • Export Citation
  • Mansard, E. P. D., , and Funke E. R. , 1980: The measurement of incident and reflected spectra using a least squares method. 17th International Conference on Coastal Engineering, B. L. Edge, Ed., ASCE, 154172.

  • Masselink, G., , and van Heteren S. , 2014: Response of wave-dominated and mixed-energy barriers to storms. Mar. Geol., 352, 321347, doi:10.1016/j.margeo.2013.11.004.

    • Search Google Scholar
    • Export Citation
  • Masuda, A., , and Kuo Y.-Y. , 1981: A note on the imaginary part of bispectra. Deep-Sea Res., 28A, 213222, doi:10.1016/0198-0149(81)90063-7.

    • Search Google Scholar
    • Export Citation
  • Miche, R., 1951: Le pouvoir réfléchissant des ouvrages maritimes exposés à l’action de la houle. Ann. Ponts Chaussees, 121, 285319.

    • Search Google Scholar
    • Export Citation
  • Morel, A., 1974: Optical properties of pure water and pure sea water. Optical Aspects of Oceanography, N. G. Jerlov and E.S. Nielson, Eds., Academic Press Inc., 1–24.

  • Nielsen, P., 1988: Wave setup: A field study. J. Geophys. Res., 93, 15 64315 652, doi:10.1029/JC093iC12p15643.

  • Oltman-Shay, J., , and Guza R. T. , 1987: Infragravity edge wave observations on two California beaches. J. Phys. Oceanogr., 17, 644663, doi:10.1175/1520-0485(1987)017<0644:IEWOOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Puleo, J. A., and et al. , 2014: A comprehensive field study of swash-zone processes. I: Experimental design with examples of hydrodynamic and sediment transport measurements. J. Waterw. Port Coastal Ocean Eng., 140, 1428, doi:10.1061/(ASCE)WW.1943-5460.0000210.

    • Search Google Scholar
    • Export Citation
  • Putrevu, U., , Oltman-Shay J. , , and Svendsen I. A. , 1995: Effect of alongshore nonuniformities on longshore current predictions. J. Geophys. Res., 100, 16 11916 130, doi:10.1029/95JC01459.

    • Search Google Scholar
    • Export Citation
  • Raubenheimer, B., , and Guza R. T. , 1996: Observations and predictions of run-up. J. Geophys. Res., 101, 25 57525 587, doi:10.1029/96JC02432.

    • Search Google Scholar
    • Export Citation
  • Raubenheimer, B., , Guza R. T. , , Elgar S. , , and Kobayashi N. , 1995: Swash on a gently sloping beach. J. Geophys. Res., 100, 87518760, doi:10.1029/95JC00232.

    • Search Google Scholar
    • Export Citation
  • Raubenheimer, B., , Elgar S. , , and Guza R. T. , 1998: Estimating wave heights from pressure measured in a sand bed. J. Waterw. Port Coast. Ocean Eng., 124, 151154, doi:10.1061/(ASCE)0733-950X(1998)124:3(151).

    • Search Google Scholar
    • Export Citation
  • Raubenheimer, B., , Guza R. T. , , and Elgar S. , 2001: Field observations of wave-driven setdown and setup. J. Geophys. Res., 106, 46294638, doi:10.1029/2000JC000572.

    • Search Google Scholar
    • Export Citation
  • Sallenger, A. H., Jr., 2000: Storm impact scale for barrier islands. J. Coastal Res., 16, 890895.

  • Stockdon, H. F., , Sallenger A. H. , , Holman R. A. , , and Howd P. A. , 2007: A simple model for the spatially-variable coastal response to hurricanes. Mar. Geol., 238, 120, doi:10.1016/j.margeo.2006.11.004.

    • Search Google Scholar
    • Export Citation
  • Streicher, M., , Hofland B. , , and Linderbergh R. C. , 2013: Laser ranging for monitoring water waves in the new Deltares Delta Flume. ISPRS Workshop Laser Scanning 2013, M. Scaioni et al., Eds., Vol. II-5/W2, ISPRS, 265–270.

  • Suhayda, J. N., 1974: Standing waves on beaches. J. Geophys. Res., 79, 30653071, doi:10.1029/JC079i021p03065.

  • Turner, I. L., , and Masselink G. , 1998: Swash infiltration-exfiltration and sediment transport. J. Geophys. Res., 103, 30 81330 824, doi:10.1029/98JC02606.

    • Search Google Scholar
    • Export Citation
  • van Rooijen, , Reniers A. , , van Thiel de Vries J. , , Blenkinsopp C. , , and McCall R. , 2012: Modeling swash zone sediment transport at Truc Vert Beach. 33rd Conference on Coastal Engineering 2012, P. Lynett and J. McKee Smith, Eds., Vol. 4, ICCE, 3265–3276.

  • Vousdoukas, M. I., , Almeida L. P. , , and Ferreira Ó. , 2011: Modelling storm-induced beach morphological change in a meso-tidal, reflective beach using XBeach. J. Coastal Res., 64, 19601920.

    • Search Google Scholar
    • Export Citation
  • Vousdoukas, M. I., , Kirupakaramoorthy T. , , Oumeraci H. , , de la Torre M. , , Wübbold F. , , Wagner B. , , and Schimmels S. , 2014: The role of combined laser scanning and video techniques in monitoring wave-by-wave swash zone processes. Coastal Eng., 83, 150165, doi:10.1016/j.coastaleng.2013.10.013.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-K., , Hsu T.-W. , , Weng W.-K. , , and Ou S.-H. , 2008: A three-point method for estimating wave reflection of obliquely incident waves over a sloping bottom. Coastal Eng., 55, 125138, doi:10.1016/j.coastaleng.2007.09.002.

    • Search Google Scholar
    • Export Citation
  • Yu, J., , and Mei C. C. , 2000: Formation of sand bars under surface waves. J. Fluid Mech., 416, 315348, doi:10.1017/S0022112000001063.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 186 186 13
PDF Downloads 132 132 11

Lidar and Pressure Measurements of Inner-Surfzone Waves and Setup

View More View Less
  • 1 Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, Duck, North Carolina
  • | 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 3 Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, Duck, North Carolina
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Observations of waves and setup on a steep, sandy beach are used to identify and assess potential applications of spatially dense lidar measurements for studying inner-surf and swash-zone hydrodynamics. There is good agreement between lidar- and pressure-based estimates of water levels (r2 = 0.98, rmse = 0.05 m), setup (r2 = 0.92, rmse = 0.03 m), infragravity wave heights (r2 = 0.91, rmse = 0.03 m), swell–sea wave heights (r2 = 0.87, rmse = 0.07 m), and energy density spectra. Lidar observations did not degrade with range (up to 65 m offshore of the lidar) when there was sufficient foam present on the water surface to generate returns, suggesting that for narrow-beam 1550-nm light, spatially varying spot size, grazing angle affects, and linear interpolation (to estimate the water surface over areas without returns) are not large sources of error. Consistent with prior studies, the lidar and pressure observations indicate that standing infragravity waves dominate inner-surf and swash energy at low frequencies and progressive swell–sea waves dominate at higher frequencies. The spatially dense lidar measurements enable estimates of reflection coefficients from pairs of locations at a range of spatial lags (thus spanning a wide range of frequencies or wavelengths). Reflection is high at low frequencies, increases with beach slope, and decreases with increasing offshore wave height, consistent with prior studies. Lidar data also indicate that wave asymmetry increases rapidly across the inner surf and swash. The comparisons with pressure measurements and with theory demonstrate that lidar measures inner-surf waves and setup accurately, and can be used for studies of inner-surf and swash-zone hydrodynamics.

Corresponding author address: Katherine L. Brodie, Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, 1261 Duck Rd., Duck, NC 27949. E-mail: katherine.l.brodie@usace.army.mil

Abstract

Observations of waves and setup on a steep, sandy beach are used to identify and assess potential applications of spatially dense lidar measurements for studying inner-surf and swash-zone hydrodynamics. There is good agreement between lidar- and pressure-based estimates of water levels (r2 = 0.98, rmse = 0.05 m), setup (r2 = 0.92, rmse = 0.03 m), infragravity wave heights (r2 = 0.91, rmse = 0.03 m), swell–sea wave heights (r2 = 0.87, rmse = 0.07 m), and energy density spectra. Lidar observations did not degrade with range (up to 65 m offshore of the lidar) when there was sufficient foam present on the water surface to generate returns, suggesting that for narrow-beam 1550-nm light, spatially varying spot size, grazing angle affects, and linear interpolation (to estimate the water surface over areas without returns) are not large sources of error. Consistent with prior studies, the lidar and pressure observations indicate that standing infragravity waves dominate inner-surf and swash energy at low frequencies and progressive swell–sea waves dominate at higher frequencies. The spatially dense lidar measurements enable estimates of reflection coefficients from pairs of locations at a range of spatial lags (thus spanning a wide range of frequencies or wavelengths). Reflection is high at low frequencies, increases with beach slope, and decreases with increasing offshore wave height, consistent with prior studies. Lidar data also indicate that wave asymmetry increases rapidly across the inner surf and swash. The comparisons with pressure measurements and with theory demonstrate that lidar measures inner-surf waves and setup accurately, and can be used for studies of inner-surf and swash-zone hydrodynamics.

Corresponding author address: Katherine L. Brodie, Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, 1261 Duck Rd., Duck, NC 27949. E-mail: katherine.l.brodie@usace.army.mil
Save