• Atlas, R. M., and et al. , 2001: The effects of marine winds from scatterometer data on weather analysis and forecasting. Bull. Amer. Meteor. Soc., 82, 19651990, doi:10.1175/1520-0477(2001)082<1965:TEOMWF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, R. M., , Hoffman R. N. , , Ardizzone J. , , Leidner S. M. , , and Jusem J.-C. , 2008: A new cross-calibrated, multi-satellite ocean surface wind product. 2008 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, Vol. 1, IEEE, I-106–I-109.

  • Atlas, R. M., , Hoffman R. N. , , Ardizzone J. , , Leidner S. M. , , Jusem J. C. , , Smith D. K. , , and Gombos D. , 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, doi:10.1175/2010BAMS2946.1.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., , Gille S. T. , , Jackson D. L. , , Roberts J. B. , , and Wick G. A. , 2010: Ocean winds and turbulent air-sea fluxes inferred from remote sensing. Oceanography, 23, 3651, doi:10.5670/oceanog.2010.04.

    • Search Google Scholar
    • Export Citation
  • Bourlès, B., and et al. , 2008: The PIRATA program: History, accomplishments, and future directions. Bull. Amer. Meteor. Soc., 89, 11111125, doi:10.1175/2008BAMS2462.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , and Xie S.-P. , 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, doi:10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and et al. , 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, doi:10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DiNapoli, S. M., , Bourassa M. A. , , and Powell M. D. , 2012: Uncertainty and intercalibration analysis of H*Wind. J. Atmos. Oceanic Technol., 29, 822833, doi:10.1175/JTECH-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Draper, D. W., , and Long D. G. , 2004a: Evaluating the effect of rain on SeaWinds scatterometer measurements. J. Geophys. Res., 109, C02005, doi:10.1029/2002JC001741.

    • Search Google Scholar
    • Export Citation
  • Draper, D. W., , and Long D. G. , 2004b: Simultaneous wind and rain retrieval using SeaWinds data. IEEE Trans. Geosci. Remote Sens., 42, 14111423, doi:10.1109/TGRS.2004.830169.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., 1999: Statistical distribution of wind speeds and directions globally observed by NSCAT. J. Geophys. Res., 104, 11 39311 403, doi:10.1029/98JC02061.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., 2000: Evaluation of NSCAT-2 wind vectors by using statistical distributions of wind speeds and directions. J. Oceanogr., 56, 161172, doi:10.1023/A:1011183029009.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and et al. , 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Fernandez, D. E., , Carswell J. R. , , Frasier S. , , Chang P. S. , , Black P. G. , , and Marks F. D. , 2006: Dual-polarized C- and Ku-band ocean backscatter response to hurricane-force winds. J. Geophys. Res., 111, C08013, doi:10.1029/2005JC003048.

    • Search Google Scholar
    • Export Citation
  • Figa-Saldaña, J., , Wilson J. J. W. , , Attema E. , , Gelsthorpe R. V. , , Drinkwater M. R. , , and Stoffelen A. , 2002: The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens., 28, 404412, doi:10.5589/m02-035.

    • Search Google Scholar
    • Export Citation
  • Fore, A. G., , Stiles B. W. , , Chau A. H. , , Williams B. A. , , Dunbar R. S. , , and Rodriguez E. , 2013: Point-wise wind retrieval and ambiguity removal improvements for the QuikSCAT climatological data set. IEEE Trans. Geosci. Remote Sens., 52, 5159, doi:10.1109/TGRS.2012.2235843.

    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., 1996: SeaWinds algorithm theoretical basis document. NASA Doc. ATBD-SWS-01, 56 pp.

  • Freilich, M. H., , and Dunbar R. S. , 1993: A preliminary C-band scatterometer model function for the ERS-1 AMI instrument. Proceedings of First ERS-1 Symposium on Space at the Service of Our Environment, Vol. 1, ESA Publ. SP-359, 7983.

  • Freilich, M. H., , and Vanhoff B. A. , 1999: QuikSCAT vector wind accuracy: Initial estimates. Proc. QuikSCAT Cal/Val Early Science Meeting, Pasadena, CA, JPL.

  • Gaiser, P. W., and et al. , 2004: The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens., 42, 23472361, doi:10.1109/TGRS.2004.836867.

    • Search Google Scholar
    • Export Citation
  • Gilhousen, D. B., 1987: A field evaluation of NDBC moored buoy winds. J. Atmos. Oceanic Technol., 4, 94104, doi:10.1175/1520-0426(1987)004<0094:AFEONM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gower, J. F. R., 2002: Temperature, wind and wave climatologies, and trends from marine meteorological buoys in the northeast Pacific. J. Climate, 15, 37093718, doi:10.1175/1520-0442(2002)015<3709:TWAWCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., , Wentz F. J. , , Smith D. K. , , and Ashcroft P. D. , 2006: Correcting active scatterometer data for the effects of rain using passive microwave data. J. Appl. Meteor. Climatol., 45, 382398, doi:10.1175/JAM2357.1.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., , and Leidner S. M. , 2005: An introduction to the near-real-time QuikSCAT data. Wea. Forecasting, 20, 476493, doi:10.1175/WAF841.1.

    • Search Google Scholar
    • Export Citation
  • Isaksen, L., , and Stoffelen A. , 2000: ERS scatterometer wind data impact on ECMWF’s tropical cyclone forecasts. IEEE Trans. Geosci. Remote Sens., 38, 18851892, doi:10.1109/36.851771.

    • Search Google Scholar
    • Export Citation
  • Jelenak, Z., , Chang P. S. , , Sienkeiwicz J. M. , , and Zhu Q. , 2013: Hurricane force extratropical cyclones. 2012 Int. Ocean Vector Wind Science Team Meeting, Kona, HI, NASA. [Available online at http://coaps.fsu.edu/scatterometry/meeting/docs/2013/Meteorology/zjelenak_HF_ETCs_IOVWST2013.pdf.]

  • Katsaros, K. B., , Vachon P. W. , , Liu W. T. , , and Black P. G. , 2002: Microwave remote sensing of tropical cyclones from space. J. Oceanogr., 58, 137151, doi:10.1023/A:1015884903180.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., 2014: Increasing wind sinks heat. Nat. Climate Change, 4, 172173, doi:10.1038/nclimate2138.

  • Liu, W. T., 2002: Progress in scatterometer application. J. Oceanogr., 58, 121136, doi:10.1023/A:1015832919110.

  • Liu, W. T., , Tang W. , , and Xie X. , 2008: Wind power distribution over the ocean. Geophys. Res. Lett., 35, L13808, doi:10.1029/2008GL034172.

    • Search Google Scholar
    • Export Citation
  • Lungu, T., , and Callahan P. S. , Eds., 2006: QuikSCAT science data product user’s manual: Overview and geophysical data products. Version 3.0, JPL Tech. Rep. D-18053-Rev A, 91 pp.

  • Martin, S., 2014: An Introduction to Ocean Remote Sensing. Cambridge University Press, 476 pp.

  • McPhaden, M. J., and et al. , 1998: The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, doi:10.1029/97JC02906.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and et al. , 2009: RAMA: The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, doi:10.1175/2008BAMS2608.1.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., , and Wentz F. J. , 2002: An updated analysis of the ocean surface wind direction signal in passive microwave brightness temperatures. IEEE Trans. Geosci. Remote Sens., 40, 12301240, doi:10.1109/TGRS.2002.800231.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., , and Wentz F. J. , 2006: Ocean retrievals for WindSat: Radiative transfer model, algorithm, validation. 2006 IEEE MicroRad Proceedings: 9th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications, IEEE. [Available online at http://images.remss.com/papers/rssconf/Meissner_microrad_2006_puertorico_windsat.pdf.]

  • Meissner, T., , and Wentz F. J. , 2009: Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens., 47, 30653083, doi:10.1109/TGRS.2009.2027012.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., , and Wentz F. J. , 2012: The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and Earth incidence angles. IEEE Trans. Geosci. Remote Sens., 50, 30043026, doi:10.1109/TGRS.2011.2179662.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., , Wentz F. J. , , and Ricciardulli L. , 2014: The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor. J. Geophys. Res. Oceans, 119, 64996522, doi:10.1002/2014JC009837.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2004: Climate Data Records from Environmental Satellites: Interim Report. National Academies Press, 150 pp.

  • PMEL, 2013: TAO/TRITON sampling regimes. PMEL. [Available online at http://www.pmel.noaa.gov/tao/jsdisplay/help/help_data_sampling.html.]

  • Powell, M. D., , Houston S. H. , , Amat L. R. , , and Morisseau-Leroy N. , 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, doi:10.1016/S0167-6105(98)00131-7.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and et al. , 2010: Reconstruction of Hurricane Katrina’s wind fields for storm surge and wave hindcasting. Ocean Eng., 37, 2636, doi:10.1016/j.oceaneng.2009.08.014.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., , Peterson G. N. , , Sproson D. A. J. , , Moore G. W. K. , , and Adiwidjaja H. , 2009: A comparison of aircraft-based surface-layer observations over Denmark Strait and the Irminger Sea with meteorological analyses and QuikSCAT winds. Quart. J. Roy. Meteor. Soc., 135, 20462066, doi:10.1002/qj.444.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., , and Wentz F. J. , 2011: Reprocessed QuikSCAT (V04) wind vectors with Ku-2011 geophysical model function. Remote Sensing Systems Tech. Rep. 043011, 8 pp. [Available online at http://images.remss.com/papers/rsstech/2011_043011_Ricciardulli_Qscat_Ku2011.pdf.]

  • Ricciardulli, L., , and Wentz F. J. , 2012: Development of consistent geophysical model functions for different scatterometer missions: Ku and C-band. 2012 Int. Ocean Vector Wind Science Team Meeting, Utrecht, Netherlands, NASA. [Available online at http://coaps.fsu.edu/scatterometry/meeting/docs/2012_meeting/New%20Products/Ricciardulli_IOVWST_2012_posted.pdf.]

  • Ricciardulli, L., , and Wentz F. J. , 2013: Towards a climate data record of ocean vector winds: The new RSS ASCAT. 2013 Int. Ocean Vector Wind Science Team Meeting, Kona, HI, NASA. [Available online at http://coaps.fsu.edu/scatterometry/meeting/docs/2013/New%20Products/Ricciardulli_ovwst_2013_ascat_winds_updated.pdf].

  • Roberts, J. B., , Clayson C. A. , , Robertson F. R. , , and Jackson D. L. , 2010: Predicting near-surface atmospheric variables from special sensor microwave/imager using neural networks with a first-guess approach. J. Geophys. Res., 115, D19113, doi:10.1029/2009JD013099.

    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., , Bosilovich M. G. , , Roberts J. B. , , Reichle R. H. , , Adler R. , , Ricciardulli L. , , Berg W. , , and Huffman G. J. , 2014: Consistency of estimated global water cycle variations over the satellite era. J. Climate, 27, 61356154, doi:10.1175/JCLI-D-13-00384.1.

    • Search Google Scholar
    • Export Citation
  • Stiles, B. W., , and Yueh S. H. , 2002: Impact of rain on spaceborne Ku-band wind scatterometer data. IEEE Trans. Geosci. Remote Sens., 40, 19731983, doi:10.1109/TGRS.2002.803846.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., , and Anderson D. , 1995: The ECMWF contribution to the characterization, interpretation, calibration and validation of ERS-1 scatterometer backscatter measurements and their use in numerical weather prediction models. ECMWF Contract Rep. 9097/90/NL/BI, 92 pp.

  • Tournadre, J., , and Quilfen Y. , 2003: Impact of rain cell on scatterometer data: 1. Theory and modeling. J. Geophys. Res., 108, 3225, doi:10.1029/2002JC001428.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., , Black P. G. , , Franklin J. L. , , Goodberlet M. A. , , Carswell J. R. , , and Goldstein A. S. , 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085, doi:10.1175/MWR3454.1.

    • Search Google Scholar
    • Export Citation
  • Verspeek, J., , Stoffelen A. , , Portabella M. , , Bonekamp H. , , Anderson C. , , and Figa-Saldaña J. , 2010: Validation and calibration of ASCAT using CMOD5.n. IEEE Trans. Geosci. Remote Sens., 48, 386395, doi:10.1109/TGRS.2009.2027896.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., , and Bourassa M. A. , 2008: Measurements of the effect of rain-induced sea surface roughness on the QuikSCAT scatterometer radar cross section. IEEE Trans. Geosci. Remote Sens., 46, 28822894, doi:10.1109/TGRS.2008.2001032.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 2013: SSM/I version-7 calibration report. Remote Sensing Systems Tech. Rep. 011012, 46 pp. [Available online at http://images.remss.com/papers/rsstech/2012_011012_Wentz_Version-7_SSMI_Calibration.pdf.]

  • Wentz, F. J., , and Smith D. K. , 1999: A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104, 11 49911 514, doi:10.1029/98JC02148.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , and Ricciardulli L. , 2011: Comment on “Global trends in wind speed and wave height.” Science, 334, 905, doi:10.1126/science.1210317.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , Cardone V. J. , , and Fedor L. S. , 1982: Intercomparison of wind speeds inferred by the SASS altimeter and SMMR. J. Geophys. Res., 87, 33783384, doi:10.1029/JC087iC05p03378.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , Mattox L. A. , , and Peteherych S. , 1986: New algorithms for microwave measurements of ocean winds: Applications to SeaSat and the Special Sensor Microwave Imager. J. Geophys. Res., 91, 22892307, doi:10.1029/JC091iC02p02289.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , Ricciardulli L. , , Hilburn K. A. , , and Mears C. A. , 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , Hilburn K. , , and Meissner T. , 2014: Two-look polarimetric (2LP) microwave radiometers for ocean vector wind retrieval. 2014 Int. Ocean Vector Wind Science Team Meeting, Brest, France, NASA. [Available online at http://coaps.fsu.edu/scatterometry/meeting/docs/2014/OVWMissionUpdates/Wentz_IOVWST_2014_Brest3%20(2).pdf.]

  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, doi:10.1175/BAMS-85-2-195.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , and Weller R. A. , 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., , and Chaubell J. , 2012: Sea surface salinity and wind retrieval using combined passive and active L-band microwave observations. IEEE Trans. Geosci. Remote Sens., 50, 10221032, doi:10.1109/TGRS.2011.2165075.

    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., , Stiles B. W. , , and Liu W. T. , 2003: QuikSCAT wind retrievals for tropical cyclones. IEEE Trans. Geosci. Remote Sens., 41, 26162628, doi:10.1109/TGRS.2003.814913.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 264 264 43
PDF Downloads 209 209 30

A Scatterometer Geophysical Model Function for Climate-Quality Winds: QuikSCAT Ku-2011

View More View Less
  • 1 Remote Sensing Systems, Santa Rosa, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Space-based observations of ocean surface winds have been available for more than 25 years. To combine the observations from multiple sensors into one record with the accuracy required for climate studies requires a consistent methodology and calibration standard for the various instruments. This study describes a new geophysical model function (GMF) specifically developed for preparing the QuikSCAT winds to serve as a backbone of an ocean vector wind climate data record. This paper describes the methodology used and presents the quality of the reprocessed winds. The new Ku-2011 model function was developed using WindSat winds as a calibration truth. An extensive validation of the Ku-2011 winds was performed that focused on 1) proving the consistency of satellite winds from different sensors at all wind speed regimes; 2) exploring and understanding possible sources of bias in the QuikSCAT retrievals; 3) validating QuikSCAT wind speeds versus in situ observations, and comparing observed wind directions versus those from numerical models; 4) comparing satellite observations of high wind speeds with measurements obtained from aircraft flying into storms; 5) analyzing case studies of satellite-based observations of winds in tropical storms; and 6) illustrating how rain impacts QuikSCAT wind speed retrievals. The results show that the reprocessed QuikSCAT data are greatly improved in both speed and direction at high winds. Finally, there is a discussion on how these QuikSCAT results fit into a long-term effort toward creating a climate data record of ocean vector winds.

Corresponding author address: Lucrezia Ricciardulli, Remote Sensing Systems, 444 Tenth Street, Suite 200, Santa Rosa, CA 95401. E-mail: ricciardulli@remss.com

Abstract

Space-based observations of ocean surface winds have been available for more than 25 years. To combine the observations from multiple sensors into one record with the accuracy required for climate studies requires a consistent methodology and calibration standard for the various instruments. This study describes a new geophysical model function (GMF) specifically developed for preparing the QuikSCAT winds to serve as a backbone of an ocean vector wind climate data record. This paper describes the methodology used and presents the quality of the reprocessed winds. The new Ku-2011 model function was developed using WindSat winds as a calibration truth. An extensive validation of the Ku-2011 winds was performed that focused on 1) proving the consistency of satellite winds from different sensors at all wind speed regimes; 2) exploring and understanding possible sources of bias in the QuikSCAT retrievals; 3) validating QuikSCAT wind speeds versus in situ observations, and comparing observed wind directions versus those from numerical models; 4) comparing satellite observations of high wind speeds with measurements obtained from aircraft flying into storms; 5) analyzing case studies of satellite-based observations of winds in tropical storms; and 6) illustrating how rain impacts QuikSCAT wind speed retrievals. The results show that the reprocessed QuikSCAT data are greatly improved in both speed and direction at high winds. Finally, there is a discussion on how these QuikSCAT results fit into a long-term effort toward creating a climate data record of ocean vector winds.

Corresponding author address: Lucrezia Ricciardulli, Remote Sensing Systems, 444 Tenth Street, Suite 200, Santa Rosa, CA 95401. E-mail: ricciardulli@remss.com
Save