Wavelet-Based Optical Flow for Two-Component Wind Field Estimation from Single Aerosol Lidar Data

Pierre Dérian California State University, Chico, Chico, California

Search for other papers by Pierre Dérian in
Current site
Google Scholar
PubMed
Close
,
Christopher F. Mauzey California State University, Chico, Chico, California

Search for other papers by Christopher F. Mauzey in
Current site
Google Scholar
PubMed
Close
, and
Shane D. Mayor California State University, Chico, Chico, California

Search for other papers by Shane D. Mayor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A motion estimation algorithm was applied to image sequences produced by a horizontally scanning elastic backscatter lidar. The algorithm, a wavelet-based optical flow estimator named Typhoon, produces dense two-component vector flow fields that correspond to the apparent motion of microscale aerosol features. To validate the efficacy of this approach for the remote measurement of wind fields in the lower atmosphere, an experiment was conducted in Chico, California, in 2013 and 2014. The flow fields, estimated every 17 s, were compared with measurements from an independent Doppler lidar. Time series of wind speed and direction, statistical assessment of the 10-min averages, and examples of wind fields are presented. The comparison of 10-min averages at 100 m AGL reveals excellent correlations between estimates from the Typhoon algorithm and measurements from the Doppler lidar. Power spectra and spectral transfer functions are computed to estimate the filtering effects of the algorithm in the spatial domain.

Corresponding author address: Shane D. Mayor, California State University, Chico, 400 W. First St., Chico, CA 95929. E-mail: sdmayor@csuchico.edu

Abstract

A motion estimation algorithm was applied to image sequences produced by a horizontally scanning elastic backscatter lidar. The algorithm, a wavelet-based optical flow estimator named Typhoon, produces dense two-component vector flow fields that correspond to the apparent motion of microscale aerosol features. To validate the efficacy of this approach for the remote measurement of wind fields in the lower atmosphere, an experiment was conducted in Chico, California, in 2013 and 2014. The flow fields, estimated every 17 s, were compared with measurements from an independent Doppler lidar. Time series of wind speed and direction, statistical assessment of the 10-min averages, and examples of wind fields are presented. The comparison of 10-min averages at 100 m AGL reveals excellent correlations between estimates from the Typhoon algorithm and measurements from the Doppler lidar. Power spectra and spectral transfer functions are computed to estimate the filtering effects of the algorithm in the spatial domain.

Corresponding author address: Shane D. Mayor, California State University, Chico, 400 W. First St., Chico, CA 95929. E-mail: sdmayor@csuchico.edu
Save
  • Adrian, R. J., 2005: Twenty years of particle image velocimetry. Exp. Fluids, 39, 159169, doi:10.1007/s00348-005-0991-7.

  • Adrian, R. J., and Westerweel J. , 2010: Particle Image Velocimetry. Cambridge Aerospace Series, Vol. 30, Cambridge University Press, 586 pp.

    • Search Google Scholar
    • Export Citation
  • Axel, A., and Ailt-Wiard J. , 2014: Calibration certificate—HALO Photonics Stream Line 1012-55. Deutsche WindGuard Tech. Rep. 14029, 60 pp.

  • Brower, M. C., Ed., 2012: Wind Resource Assessment: A Practical Guide to Developing a Wind Project. John Wiley & Sons, 296 pp.

  • Carbon Trust, 2013: Carbon Trust Offshore Wind Accelerator roadmap for the commercial acceptance of floating LIDAR technology. Tech. Rep. CTC819, Version 1.0, Offshore Wind Accelerator Program, 30 pp. [Available online at http://www.carbontrust.com/media/422195/ctc819-owa-roadmap-commercial-acceptance-floating-lidar-technologies.pdf.]

  • Corpetti, T., Mémin E. , and Pérez P. , 2002: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell., 24, 365380, doi:10.1109/34.990137.

    • Search Google Scholar
    • Export Citation
  • Dérian, P., 2012: Wavelets and fluid motion estimation. Ph.D. thesis, Matisse, Université Rennes 1, 118 pp. [Available online at http://tel.archives-ouvertes.fr/tel-00761919/PDF/theseDERIAN_v3_BU_.pdf.]

  • Dérian, P., Héas P. , Mémin E. , and Mayor S. , 2011: Dense motion estimation from eye-safe aerosol lidar data. 25th International Laser Radar Conference 2010 (ILRC 25), Vol. 1, ICLAS, 377–380.

  • Dérian, P., Héas P. , Herzet C. , and Mémin E. , 2013: Wavelets and optical flow motion estimation. Numer. Math. Theory Methods Appl., 6, 116137.

    • Search Google Scholar
    • Export Citation
  • Dugan, J., Anderson S. , Piotrowski C. , and Zuckerman S. , 2014: Airborne infrared remote sensing of riverine currents. IEEE Trans. Geosci. Remote Sens., 52, 38953907, doi:10.1109/TGRS.2013.2277815.

    • Search Google Scholar
    • Export Citation
  • Eloranta, E., King J. , and Weinman J. , 1975: The determination of wind speeds in the boundary layer by monostatic lidar. J. Appl. Meteor., 14, 14851489, doi:10.1175/1520-0450(1975)014<1485:TDOWSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fisher, N. I., 1995: Statistical Analysis of Circular Data. Cambridge University Press, 296 pp.

  • García-Pereda, J., and Borde R. , 2014: The impact of the tracer size and the temporal gap between images in the extraction of atmospheric motion vectors. J. Atmos. Oceanic Technol., 31, 17611770, doi:10.1175/JTECH-D-13-00235.1.

    • Search Google Scholar
    • Export Citation
  • Hamada, M., 2014: Evaluations of the performance of a cross-correlation algorithm for wind velocity estimation using syntetic backscatter lidar images and velocity fields. M. S. thesis, Dept. of Geological and Environmental Sciences, California State University, Chico, 202 pp. [Available online at http://lidar.csuchico.edu/publications/Masaki_Hamada_MS_thesis.pdf.]

  • Held, A., Seith T. , Brooks I. M. , Norris S. J. , and Mayor S. D. , 2012: Intercomparison of lidar aerosol backscatter and in-situ size distribution measurements. European Aerosol Conf., Granada, Spain, European Aerosol Assembly, B-WG01S2P05.

  • Horn, B. K., and Schunck B. G. , 1981: Determining optical flow. Artif. Intell., 17, 185203, doi:10.1016/0004-3702(81)90024-2.

  • Kadri Harouna, S., Dérian P. , Héas P. , and Mémin E. , 2013: Divergence-free wavelets and high order regularization. Int. J. Comput. Vision, 103, 8099, doi:10.1007/s11263-012-0595-7.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and Finnigan J. J. , 1994: Atmospheric Boundary Layer Flows. Oxford University Press, 289 pp.

  • Kanak, K. M., 2005: Numerical simulation of dust devil-scale vortices. Quart. J. Roy. Meteor. Soc., 131, 12711292, doi:10.1256/qj.03.172.

    • Search Google Scholar
    • Export Citation
  • Leese, J., Novack C. , and Clark B. , 1971: An automated technique for obtained cloud motion from geosynchronous satellite data using cross correlation. J. Appl. Meteor., 10, 118132, doi:10.1175/1520-0450(1971)010<0118:AATFOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mallat, S., 2008: A Wavelet Tour of Signal Processing: The Sparse Way. 3rd ed. Academic Press, 832 pp.

  • Mann, J., and Coauthors, 2009: Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer. Meteor. Z., 18, 135140, doi:10.1127/0941-2948/2009/0370.

    • Search Google Scholar
    • Export Citation
  • Mann, J., Pena A. , Bingol F. , Wagner R. , and Courtney M. S. , 2010: Lidar scanning of momentum flux in and above the atmospheric surface layer. J. Atmos. Oceanic Technol., 27, 959976, doi:10.1175/2010JTECHA1389.1.

    • Search Google Scholar
    • Export Citation
  • Mauzey, C. F., Lowe J. P. , and Mayor S. D. , 2012: Real-time wind velocity estimation from aerosol lidar data using graphics hardware. GPU Technology Conf., San Jose, CA, NVIDIA Corporation, P2501. [Available online at http://on-demand.gputechconf.com/gtc/2012/posters/P0501_cmauzey_jlowe_sdmayor_gtc_2012_poster_draft_final.pdf.]

  • Mauzey, C. F., Dérian P. , and Mayor S. D. , 2014: Wavelet-based optical flow for real-time wind estimation using CUDA. GPU Technology Conf., San Jose, CA, NVIDIA Corporation, P4253. [Available online at http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4253_optical-flow_wavelets_wind_lidar.pdf.]

  • Mayor, S. D., and Eloranta E. W. , 2001: Two-dimensional vector wind fields from volume imaging lidar data. J. Appl. Meteor., 40, 13311346, doi:10.1175/1520-0450(2001)040<1331:TDVWFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mayor, S. D., and Spuler S. M. , 2004: Raman-shifted eye-safe aerosol lidar. Appl. Opt., 43, 39153924, doi:10.1364/AO.43.003915.

  • Mayor, S. D., Spuler S. M. , Morley B. M. , and Loew E. , 2007: Polarization lidar at 1.54 μm and observations of plumes from aerosol generators. Opt. Eng., 46, 096201, doi:10.1117/1.2786406.

  • Mayor, S. D., Lowe J. P. , and Mauzey C. F. , 2012: Two-component horizontal aerosol motion vectors in the atmospheric surface layer from a cross-correlation algorithm applied to scanning elastic backscatter lidar data. J. Atmos. Oceanic Technol., 29, 15851602, doi:10.1175/JTECH-D-11-00225.1.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., and Matusov P. , 2002: Distribution of breaking waves at the ocean surface. Nature, 417, 5863, doi:10.1038/417058a.

  • Päschke, E., Leinweber R. , and Lehmann V. , 2014: A one year comparison of 482 MHz radar wind profiler, RS92-SGP radiosonde and 1.5 μm Doppler lidar wind measurements. Atmos. Meas. Tech. Discuss., 7, 11 43911 479, doi:10.5194/amtd-7-11439-2014.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., and Coauthors, 2011: The canopy horizontal array turbulence study. Bull. Amer. Meteor. Soc., 92, 593611, doi:10.1175/2010BAMS2614.1.

    • Search Google Scholar
    • Export Citation
  • Pearson, G., Davies F. , and Collier C. , 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250, doi:10.1175/2008JTECHA1128.1.

    • Search Google Scholar
    • Export Citation
  • Sasano, Y., Hirohara H. , Yamasaki T. , Shimizu H. , Takeuchi N. , and Kawamura T. , 1982: Horizontal wind vector determination from the displacement of aerosol distribution patterns observed by a scanning lidar. J. Appl. Meteor., 21, 15161523, doi:10.1175/1520-0450(1982)021<1516:HWVDFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sathe, A., and Mann J. , 2012: Measurement of turbulence spectra using scanning pulsed wind lidars. J. Geophys. Res., 117, D01201, doi:10.1029/2011JD016786.

    • Search Google Scholar
    • Export Citation
  • Sathe, A., and Mann J. , 2013: A review of turbulence measurements using ground-based wind lidars. Atmos. Meas. Tech. Discuss., 6, 68156871, doi:10.5194/amtd-6-6815-2013.

    • Search Google Scholar
    • Export Citation
  • Sathe, A., Mann J. , Gottschall J. , and Courtney M. S. , 2011: Can wind lidars measure turbulence? J. Atmos. Oceanic Technol., 28, 853868, doi:10.1175/JTECH-D-10-05004.1.

    • Search Google Scholar
    • Export Citation
  • Scambos, T. A., Dutkiewicz M. J. , Wilson J. C. , and Bindschadler R. A. , 1992: Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ., 42, 177186, doi:10.1016/0034-4257(92)90101-O.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., Holmund K. , Hoffman J. , Strauss B. , Mason B. , Gaertner V. , Koch A. , and van de Berg L. , 1993: Operational cloud-motion winds from Meteosat infrared images. J. Appl. Meteor., 32, 12061225, doi:10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and Schumann U. , 1989: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech., 200, 511562, doi:10.1017/S0022112089000753.

    • Search Google Scholar
    • Export Citation
  • Schols, J., and Eloranta E. , 1992: Calculation of area-averaged vertical profiles of the horizontal wind velocity from volume-imaging lidar data. J. Geophys. Res., 97, 18 39518 407, doi:10.1029/92JD01051.

    • Search Google Scholar
    • Export Citation
  • Spuler, S. M., and Mayor S. D. , 2005: Scanning eye-safe elastic backscatter lidar at 1.54 μm. J. Atmos. Oceanic Technol., 22, 696703, doi:10.1175/JTECH1755.1.

    • Search Google Scholar
    • Export Citation
  • Stawiarski, C., Träumner K. , Knigge C. , and Calhoun R. , 2013: Scopes and challenges of dual-Doppler lidar wind measurements—An error analysis. J. Atmos. Oceanic Technol., 30, 20442062, doi:10.1175/JTECH-D-12-00244.1.

    • Search Google Scholar
    • Export Citation
  • Stumpf, A., Malet J. , Allemand P. , Skupinski G. , and Pierrot-Deseilligny M. , 2013: Terrestrial multi-view photogrammetry for landslide monitoring. 2013 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract G22A-05.

  • Sullivan, P. P., and Patton E. G. , 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, doi:10.1175/JAS-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Van Dyke, M., 1982: An Album of Fluid Motion. 14th ed. Parabolic Press, 176 pp.

  • Weber, B., Wuertz D. , Welsh D. , and McPeek R. , 1993: Quality controls for profiler measurements of winds and RASS temperatures. J. Atmos. Oceanic Technol., 10, 452464, doi:10.1175/1520-0426(1993)010<0452:QCFPMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 634 178 15
PDF Downloads 520 140 4