• Amarin, R. A., 2010: Hurricane wind speed and rain rate measurements using the airborne Hurricane Imaging Radiometer (HIRAD). Ph.D. dissertation, University of Central Florida, 171 pp. [Available online at http://etd.fcla.edu/CF/CFE0003082/Amarin_Ruba_A_201005_PhD.pdf.]

  • Amarin, R. A., , Jones W. L. , , El-Nimri S. F. , , Johnson J. W. , , Ruf C. S. , , Miller T. L. , , and Uhlhorn E. , 2012: Hurricane wind speed measurements in rainy conditions using the airborne Hurricane Imaging Radiometer (HIRAD). IEEE Trans. Geosci. Remote Sens., 50, 180192, doi:10.1109/TGRS.2011.2161637.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and et al. , 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, doi:10.1175/BAMS-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • El-Nimri, S. F., , Jones W. L. , , Uhlhorn E. , , Ruf C. , , Johnson J. , , and Black P. , 2010: An improved C-band ocean surface emissivity model at hurricane-force wind speeds over a wide range of Earth incidence angles. IEEE Geosci. Remote Sens. Lett., 7, 641645, doi:10.1109/LGRS.2010.2043814.

    • Search Google Scholar
    • Export Citation
  • Guan, B., , Molotch N. P. , , Waliser D. E. , , Fetzer E. J. , , and Neiman P. J. , 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.

    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., , and Uhlhorn E. W. , 2014: Improved Stepped Frequency Microwave Radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Oceanic Technol., 31, 23922408, doi:10.1175/JTECH-D-14-00028.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , Olson W. S. , , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometer profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, doi:10.1109/36.536538.

    • Search Google Scholar
    • Export Citation
  • Nordberg, W., , Conaway J. , , Ross D. B. , , and Wilheit T. , 1971: Measurements of microwave emission from a foam-covered, wind-driven sea. J. Atmos. Sci., 28, 429435, doi:10.1175/1520-0469(1971)028<0429:MOMEFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., , Dalu G. , , Liberti G. L. , , Nucciarone J. J. , , and Suhasini R. , 1992: Rainfall estimation over oceans from SSMR and SSM/I microwave data. J. Appl. Meteor., 31, 532552, doi:10.1175/1520-0450(1992)031<0532:REOOFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., , and Staelin D. H. , 1972: Microwave emissivity of sea foam and its effect on nadir radiometric measurements. J. Geophys. Res., 77, 65286538, doi:10.1029/JC077i033p06528.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., , Kossin J. P. , , and Rozoff C. M. , 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, doi:10.1175/MWR-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , and Kummerow C. D. , 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765, doi:10.1175/2006JAS2375.1.

    • Search Google Scholar
    • Export Citation
  • Stogryn, A., 1967: The apparent temperature of sea at microwave frequencies. IEEE Trans. Antennas Propag., 15, 278286, doi:10.1109/TAP.1967.1138900.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., , and Black P. G. , 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20, 99116, doi:10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., , Black P. G. , , Franklin J. L. , , Goodberlet M. , , Carswell J. , , and Goldstein A. S. , 2007: Hurricane surface wind measurements from an operational Stepped Frequency Microwave Radiometer. Mon. Wea. Rev., 135, 30703085, doi:10.1175/MWR3454.1.

    • Search Google Scholar
    • Export Citation
  • Weinman, J., , and Guetter P. , 1977: Determination of rainfall distributions from microwave radiation measured by the Nimbus 6 ESMR. J. Appl. Meteor., 16, 437442, doi:10.1175/1520-0450(1977)016<0437:DORDFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., 1976: Meteorological interpretations of the images from the Nimbus 5 Electronically Scanned Microwave Radiometer. J. Appl. Meteor., 15, 166173, doi:10.1175/1520-0450(1976)015<0166:MIOTIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., 1986: Some comments on passive microwave measurement of rain. Bull. Amer. Meteor. Soc., 67, 12261232, doi:10.1175/1520-0477(1986)067<1226:SCOPMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., and et al. , 1994: Algorithms for the retrieval of rainfall from passive microwave measurements. Remote Sens. Rev., 11, 163194, doi:10.1080/02757259409532264.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , Clos J. A. , , and Shoreibah M. G. , 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 5
PDF Downloads 11 11 2

A Coupled-Pixel Model (CPM) Atmospheric Retrieval Algorithm for High-Resolution Imagers

View More View Less
  • 1 University of Michigan, Ann Arbor, Michigan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Low-frequency passive microwave observations allow for oceanic remote sensing of surface wind speed and rain rate from spaceborne and airborne platforms. For most instruments, the modeling of contributions of rain absorption and reemission in a particular field of view is simplified by the observing geometry. However, the simplifying assumptions that can be applied in most applications are not always valid for the scenes that the airborne Hurricane Imaging Radiometer (HIRAD) regularly observes. Collocated Stepped Frequency Microwave Radiometer (SFMR) and HIRAD observations of Hurricane Earl (2010) indicate that retrieval algorithms based on the usual simplified model, referred to here as the decoupled-pixel model (DPM), are not able to resolve two neighboring rainbands at the edge of HIRAD’s swath. The DPM does not allow for the possibility that a single column of atmosphere can affect the observations at multiple cross-track positions. This motivates the development of a coupled-pixel model (CPM) that is developed and tested in this paper. Simulated observations as well as HIRAD’s observations of Hurricane Earl (2010) are used to test the CPM algorithm. Key to the performance of the CPM algorithm is its ability to deconvolve the cross-track scene, as well as unscramble the signatures of surface wind speed and rain rate in HIRAD’s observations. While the CPM approach was developed specifically for HIRAD, other sensors could employ this method in similar complicated observing scenarios.

Corresponding author address: Mary Morris, Dept. of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143. E-mail: marygm@umich.edu

Abstract

Low-frequency passive microwave observations allow for oceanic remote sensing of surface wind speed and rain rate from spaceborne and airborne platforms. For most instruments, the modeling of contributions of rain absorption and reemission in a particular field of view is simplified by the observing geometry. However, the simplifying assumptions that can be applied in most applications are not always valid for the scenes that the airborne Hurricane Imaging Radiometer (HIRAD) regularly observes. Collocated Stepped Frequency Microwave Radiometer (SFMR) and HIRAD observations of Hurricane Earl (2010) indicate that retrieval algorithms based on the usual simplified model, referred to here as the decoupled-pixel model (DPM), are not able to resolve two neighboring rainbands at the edge of HIRAD’s swath. The DPM does not allow for the possibility that a single column of atmosphere can affect the observations at multiple cross-track positions. This motivates the development of a coupled-pixel model (CPM) that is developed and tested in this paper. Simulated observations as well as HIRAD’s observations of Hurricane Earl (2010) are used to test the CPM algorithm. Key to the performance of the CPM algorithm is its ability to deconvolve the cross-track scene, as well as unscramble the signatures of surface wind speed and rain rate in HIRAD’s observations. While the CPM approach was developed specifically for HIRAD, other sensors could employ this method in similar complicated observing scenarios.

Corresponding author address: Mary Morris, Dept. of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143. E-mail: marygm@umich.edu
Save