• Andrić, J., , Kumjian M. R. , , Zrnić D. S. , , Straka J. M. , , and Melnikov V. M. , 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., , Park S. H. , , and Walsh T. M. , 1998: Bistatic dual-polarization scattering from rain and hail at S- and C-band frequencies. J. Atmos. Oceanic Technol., 15, 11101121, doi:10.1175/1520-0426(1998)015<1110:BDPSFR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barber, P., , and Yeh C. , 1975: Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl. Opt., 14, 28642872, doi:10.1364/AO.14.002864.

    • Search Google Scholar
    • Export Citation
  • Bi, L., , and Yang P. , 2014: Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 138, 1735, doi:10.1016/j.jqsrt.2014.01.013.

    • Search Google Scholar
    • Export Citation
  • Bi, L., , Yang P. , , Kattawar G. W. , , and Mishchenko M. I. , 2013a: A numerical combination of extended boundary condition method and invariant imbedding method applied to light scattering by large spheroids and cylinders. J. Quant. Spectrosc. Radiat. Transfer, 123, 1722, doi:10.1016/j.jqsrt.2012.11.033.

    • Search Google Scholar
    • Export Citation
  • Bi, L., , Yang P. , , Kattawar G. W. , , and Mishchenko M. I. , 2013b: Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transfer, 116, 169183, doi:10.1016/j.jqsrt.2012.11.014.

    • Search Google Scholar
    • Export Citation
  • Botta, G., , Aydin K. , , and Verlinde J. , 2010: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: A new approach. IEEE Geosci. Remote Sens. Lett., 7, 572576, doi:10.1109/LGRS.2010.2041633.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Casella, D., , Mugnai A. , , Sanò P. , , and Formenton M. , 2008: Microwave single-scattering properties of randomly oriented soft-ice hydrometeors. Adv. Geosci., 17, 7985, doi:10.5194/adgeo-17-79-2008.

    • Search Google Scholar
    • Export Citation
  • Chew, W. C., , Jin J.-M. , , Michielssen E. , , and Song J. , Eds., 2001: Fast and Efficient Algorithms in Computational Electromagnetics. Artech House Antennas and Propagation Library, Artech House, 931 pp.

    • Search Google Scholar
    • Export Citation
  • Chobanyan, E., , Ilić M. M. , , and Notaroš B. , 2013a: Double-higher-order large-domain volume/surface integral equation method for analysis of composite wire-plate-dielectric antennas and scatterers. IEEE Trans. Antennas Propag., 61, 60516063, doi:10.1109/TAP.2013.2281360.

    • Search Google Scholar
    • Export Citation
  • Chobanyan, E., , Notaroš J. , , Chandrasekar V. , , and Notaroš B. , 2013b: Accurate electromagnetic modeling of melting hail. 2013 US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM 2013), IEEE, 73, doi:10.1109/USNC-URSI-NRSM.2013.6525013.

  • Chobanyan, E., , Sekeljiić N. J. , , Manić A. B. , , Ilić M. M. , , and Notaroš B. M. , 2013c: Atmospheric particle scattering computation using higher order MoM-SIE method. 2013 IEEE Antennas and Propagation Society International Symposium: Proceedings, IEEE, 1978–1979, doi:10.1109/APS.2013.6711647.

  • Chobanyan, E., , Ilić M. M. , , and Notaroš B. M. , 2015: Lagrange-type modeling of continuous dielectric permittivity variation in double-higher-order volume integral equation method. Radio Sci., 50, 406414, doi:10.1002/2014RS005634.

    • Search Google Scholar
    • Export Citation
  • Djordjević, M., , and Notaroš B. M. , 2004: Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers. IEEE Trans. Antennas Propag., 52, 21182129, doi:10.1109/TAP.2004.833175.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., , and Rutledge S. A. , 2009: A theory-based hydrometeor identification. J. Atmos. Oceanic Technol., 26, 20712088, doi:10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., , and Goodman J. , 1993: Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation. Astrophys. J., 405, 685697, doi:10.1086/172396.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., , and Flatau P. J. , 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A, 14911499, doi:10.1364/JOSAA.11.001491.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., , and Flatau P. J. , 2012: User guide for the discrete dipole approximation code DDSCAT 7.2. Cornell University, 95 pp. [Available online at http://arxiv.org/abs/1202.3424.]

  • Evans, K. F., , and Stephens G. L. , 1995: Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part I: Single scattering properties. J. Atmos. Sci., 52, 20412057, doi:10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, H., , Hu J. , , and Michielssen E. , 2013: On MLMDA/butterfly compressibility of inverse integral operators. IEEE Antennas Wireless Propag. Lett., 12, 3134, doi:10.1109/LAWP.2012.2234433.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and et al. , 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., , Bringi V. N. , , Cifelli R. , , Hudak D. , , and Petersen W. A. , 2010: A methodology to derive radar reflectivity–liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637651, doi:10.1175/2009JTECHA1284.1.

    • Search Google Scholar
    • Export Citation
  • Ilić, M. M., , and Notaroš B. M. , 2003: Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling. IEEE Trans. Microwave Theory Tech., 51, 10261033, doi:10.1109/TMTT.2003.808680.

    • Search Google Scholar
    • Export Citation
  • Ilić, M. M., , Djordjević M. , , Ilić A. Z. , , and Notaroš B. M. , 2009a: Higher order hybrid FEM-MoM technique for analysis of antennas and scatterers. IEEE Trans. Antennas Propag., 57, 14521460, doi:10.1109/TAP.2009.2016725.

    • Search Google Scholar
    • Export Citation
  • Ilić, M. M., , Ilić A. Z. , , and Notaroš B. M. , 2009b: Continuously inhomogeneous higher order finite elements for 3-D electromagnetic analysis. IEEE Trans. Antennas Propag., 57, 27982803, doi:10.1109/TAP.2009.2027350.

    • Search Google Scholar
    • Export Citation
  • Kahnert, M., 2013: The T-matrix code Tsym for homogeneous dielectric particles with finite symmetries. J. Quant. Spectrosc. Radiat. Transfer, 123, 6278, doi:10.1016/j.jqsrt.2012.12.019.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., , and Rutledge S. A. , 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , and Ryzhkov A. V. , 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., , and Meneghini R. , 2013: Examination of effective dielectric constants of nonspherical mixed-phase hydrometeors. J. Appl. Meteor. Climatol., 52, 197212, doi:10.1175/JAMC-D-11-0244.1.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61, 24412456, doi:10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mackowski, D. W., 2014: A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media. J. Quant. Spectrosc. Radiat. Transfer, 133, 264270, doi:10.1016/j.jqsrt.2013.08.012.

    • Search Google Scholar
    • Export Citation
  • Mackowski, D. W., , and Mishchenko M. I. , 2011: A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J. Quant. Spectrosc. Radiat. Transfer, 112, 21822192, doi:10.1016/j.jqsrt.2011.02.019.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 2010: The Physics of Clouds. Oxford University Press, 688 pp.

  • Matrosov, S. Y., , Reinking R. F. , , Kropfli R. A. , , Martner B. E. , , and Bartram B. W. , 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, doi:10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 330, 377445, doi:10.1002/andp.19083300302.

    • Search Google Scholar
    • Export Citation
  • Mirković, D. J., , Zrnić D. , , and Ryzhkov A. , 2013a: Application of MoM to the calculation of polarimetric variables for ensembles of rough hydrometeors. Proc. Progress in Electromagnetics Research Symp., Stockholm, Sweden, Electromagnetics Academy, 1420. [Available at https://piers.org/piersproceedings/download.php?file=cGllcnMyMDEzU3RvY2tob2xtfDRBOGEucGRmfA==.]

  • Mirković, D. J., , Zrnić D. , , and Ryzhkov A. , 2013b: Full wave EM calculation of polarimetric variables for the atmospheric scatterers with nonspheroidal shape. 2013 US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM 2013), IEEE, 72, doi:10.1109/USNC-URSI-NRSM.2013.6525014.

  • Mirković, D. J., , Zrnić D. , , and Ryzhkov A. , 2014: Application of the full wave electromagnetic approach to the calculation of polarimetric variables for ensembles of rough and nonspheroidal hydrometeors. Extended Abstracts, Eighth European Conf. on Radar in Meteorology and Hydrology (ERAD 2014), Garmisch-Partenkirchen, Germany, DWD/DLR, DAC.P25. [Available online at http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/272_Mirkovic.pdf.]

  • Mishchenko, M. I., 2014: Electromagnetic Scattering by Particles and Particle Groups: An Introduction. Cambridge University Press, 450 pp.

  • Mishchenko, M. I., , Travis L. D. , , and Macke A. , 1996: Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt., 35, 49274940, doi:10.1364/AO.35.004927.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., , Travis L. D. , , and Lacis A. A. , 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, 462 pp.

  • Notaroš, B. M., 2008: Higher order frequency-domain computational electromagnetics. IEEE Trans. Antennas Propag., 56, 22512276, doi:10.1109/TAP.2008.926784.

    • Search Google Scholar
    • Export Citation
  • Notaroš, B. M., 2010: Electromagnetics. Prentice Hall, 840 pp.

  • Notaroš, J., , Chobanyan E. , , Chandrasekar V. , , and Notaroš B. M. , 2013: Accurate and efficient full-wave electromagnetic analysis of scattering from hailstones. 2013 IEEE Antennas and Propagation Society International Symposium: Proceedings, IEEE, 1976–1977, doi:10.1109/APS.2013.6711646.

  • Petty, G. W., , and Huang W. , 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, doi:10.1175/2009JAS3146.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and Klett J. D. , 2010: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18, Springer, 954 pp.

  • Reinking, R. F., , Matrosov S. Y. , , Kropfli R. A. , , and Bartram B. W. , 2002: Evaluation of a 45° slant quasi-linear radar polarization state for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321, doi:10.1175/1520-0426-19.3.296.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Zrnić D. S. , , and Gordon B. A. , 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134, doi:10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Pinsky M. , , Pokrovsky A. , , and Khain A. , 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, doi:10.1175/2010JAMC2363.1.

    • Search Google Scholar
    • Export Citation
  • Šekeljiić, N. J., , Manić A. B. , , Chobanyan E. , , Thurai M. , , Bringi V. N. , , and Notaroš B. M. , 2014: Electromagnetic scattering by oscillating rain drops of asymmetric shapes. 2014 IEEE Antennas and Propagation Society International Symposium: Proceedings, IEEE, 1572–1573, doi:10.1109/APS.2014.6905112.

  • Stephens, G. L., and et al. , 2002: The CloudSat Mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Teschl, T., , Randeu W. L. , , and Teshl R. , 2010: Microwave scattering from ice crystals: How much parameters can differ from equal volume spheres. Adv. Geosci., 25, 12713, doi:10.5194/adgeo-25-127-2010.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., , Huang G. J. , , Bringi V. N. , , Randeu W. L. , , and Schonhuber M. , 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032, doi:10.1175/JTECH2051.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., , Bringi V. N. , , Manić A. B. , , and Notaroš B. M. , 2013: Ongoing investigations of rain drop shapes and oscillation modes. Proc. 13th URSI Commission F Triennial Open Symp. on Radiowave Propagation and Remote Sensing, Ottawa, ON, Canada, URSI, RP-5. [Available online at https://www.engr.colostate.edu/~notaros/Papers/URSI_F_Ottawa_2013_Rain.pdf.]

  • Thurai, M., , Bringi V. N. , , Manić A. B. , , Sekeljiić N. J. , , and Notaroš B. M. , 2014: Investigating raindrop shapes, oscillation modes, and implications for radio wave propagation. Radio Sci., 49, 921932, doi:10.1002/2014RS005503.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., , and Chandrasekar V. , 2014: Characterizing falling snow using multifrequency dual-polarization measurements. J. Geophys. Res. Atmos., 119, 82688283, doi:10.1002/2013JD021369.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., , Leinonen J. , , Moisseev D. , , and Nousiainen T. , 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate, and soft spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, doi:10.1175/JTECH-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , Adams W. M. , , and Bringi V. N. , 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30, 10531063, doi:10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , Bringi V. N. , , Hagen M. , , and Meischner P. , 1994: Polarimetric radar studies of atmospheric ice particles. Trans. IEEE Geosci Remote Sens., 32, 110, doi:10.1109/36.285183.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 1982: Mathematical description of the shape of conical hydrometeors. J. Atmos. Sci., 39, 26152622, doi:10.1175/1520-0469(1982)039<2615:MDOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 1999: Three-dimensional representations of hexagonal ice crystals and hail particles of elliptical cross sections. J. Atmos. Sci., 56, 10891093, doi:10.1175/1520-0469(1999)056<1089:TDROHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waterman, P. C., 1965: Matrix formulation of electromagnetic scattering. Proc. IEEE, 53, 805812, doi:10.1109/PROC.1965.4058.

  • Yang, P., , and Liou K. N. , 2000: Finite difference time domain method for light scattering by nonspherical particles. Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Eds., Academic Press, 173–221.

  • Ylä-Oijala, P., , Markkanen J. , , Järvenpää S. , , and Kiminki S. P. , 2014: Surface and volume integral equation methods for time-harmonic solutions of Maxwell’s equations. Prog. Electromagn. Res., 149, 1544, doi:10.2528/PIER14070105.

    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., , and Hoekstra A. G. , 2007: The discrete dipole approximation: An overview and recent developments. J. Quant. Spectrosc. Radiat. Transfer, 106, 558589, doi:10.1016/j.jqsrt.2007.01.034.

    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., , and Hoekstra A. G. , 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 22342247, doi:10.1016/j.jqsrt.2011.01.031.

    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., , and Hoekstra A. G. , 2013: ADDA version 1.2 code. Accessed June 2015. [Available online at https://code.google.com/p/a-dda/.]

  • Yurkin, M. A., , and Kahnert M. , 2013: Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 123, 176183, doi:10.1016/j.jqsrt.2012.10.001.

    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., , Maltsev V. P. , , and Hoekstra A. G. , 2006: Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy. J. Opt. Soc. Amer., 23A, 25922601, doi:10.1364/JOSAA.23.002592.

    • Search Google Scholar
    • Export Citation
  • Zhang Y., , Huston A. , , Mallo M. , , Li Z. , , and Zhang G. , 2010: A scatterometer system for laboratory study of polarimetric electromagnetic signatures of icy hydrometeors. IEEE Trans. Instrumen. Meas., 59, 671681, doi:10.1109/TIM.2009.2025984.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 148 11
PDF Downloads 123 123 15

Efficient and Accurate Computational Electromagnetics Approach to Precipitation Particle Scattering Analysis Based on Higher-Order Method of Moments Integral Equation Modeling

View More View Less
  • 1 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado
  • | 2 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado, and School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
  • | 3 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A new full-wave computational electromagnetics (CEM) approach to precipitation particle scattering analysis based primarily on a higher-order method of moments (MoM) for solving surface integral equations (SIEs) is proposed, as an alternative and addition to the conventionally used tools in this area. This is a well-established CEM approach that has not been applied, evaluated, discussed, or compared with other approaches in the scattering analysis of precipitation particles so far. Several characteristic examples of scattering from precipitation particles of various shapes demonstrate the capabilities and potential of the presented numerical methodology, and discuss its advantages over both discrete dipole approximation (DDA) and -matrix methods in cases considered. In particular, it is shown that the higher-order MoM-SIE approach is much faster, more accurate, and more robust than the DDA method, and much more general and versatile than the -matrix method. In addition, the paper illustrates problems with the convergence of the DDA method in some cases with high-contrast dielectric materials and large electrical sizes of particles and with the convergence of the -matrix method in some cases with electrically large or geometrically complex (viz., with a large aspect ratio) particles. For simulations of continuously inhomogeneous scatterers (e.g., melting ice particles), a higher-order MoM volume integral equation (VIE) technique is used, as the study’s secondary methodology. The results also indicate the necessity for numerically rigorous and computationally efficient realistic precipitation particle modeling in weather scattering applications, which is becoming even more important as the sensor frequencies of radar/radiometric systems are increasing.

Corresponding author address: Branislav M. Notaroš, Department of Electrical and Computer Engineering, Colorado State University, Campus Delivery 1373, Fort Collins, CO 80523-1373. E-mail: notaros@colostate.edu

Abstract

A new full-wave computational electromagnetics (CEM) approach to precipitation particle scattering analysis based primarily on a higher-order method of moments (MoM) for solving surface integral equations (SIEs) is proposed, as an alternative and addition to the conventionally used tools in this area. This is a well-established CEM approach that has not been applied, evaluated, discussed, or compared with other approaches in the scattering analysis of precipitation particles so far. Several characteristic examples of scattering from precipitation particles of various shapes demonstrate the capabilities and potential of the presented numerical methodology, and discuss its advantages over both discrete dipole approximation (DDA) and -matrix methods in cases considered. In particular, it is shown that the higher-order MoM-SIE approach is much faster, more accurate, and more robust than the DDA method, and much more general and versatile than the -matrix method. In addition, the paper illustrates problems with the convergence of the DDA method in some cases with high-contrast dielectric materials and large electrical sizes of particles and with the convergence of the -matrix method in some cases with electrically large or geometrically complex (viz., with a large aspect ratio) particles. For simulations of continuously inhomogeneous scatterers (e.g., melting ice particles), a higher-order MoM volume integral equation (VIE) technique is used, as the study’s secondary methodology. The results also indicate the necessity for numerically rigorous and computationally efficient realistic precipitation particle modeling in weather scattering applications, which is becoming even more important as the sensor frequencies of radar/radiometric systems are increasing.

Corresponding author address: Branislav M. Notaroš, Department of Electrical and Computer Engineering, Colorado State University, Campus Delivery 1373, Fort Collins, CO 80523-1373. E-mail: notaros@colostate.edu
Save