• Born, M., , and Wolf E. , 1975: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 5th ed. Pergamon Press, 836 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 664 pp.

  • Chandrasekar, V., , and Keeler R. J. , 1993: Antenna pattern analysis and measurements for multiparameter radars. J. Atmos. Oceanic Technol., 10, 674683, doi:10.1175/1520-0426(1993)010<0674:APAAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., , Summa D. , , Cacciani M. , , Norton E. G. , , Peters G. , , and Dufournet Y. , 2012: Lidar and radar measurements of the melting layer: Observations of dark and bright band phenomena. Atmos. Chem. Phys., 12, 41434157, doi:10.5194/acp-12-4143-2012.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., , and van Lammeren A. C. A. P. , 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations: 1. Theory and examples. J. Geophys. Res., 106, 27 425–27 448, doi:10.1029/2001JD900243.

    • Search Google Scholar
    • Export Citation
  • Eloranta, E., , Uttal T. , , and Shupe M. , 2007: Cloud particle size measurements in Arctic clouds using lidar and radar data. IEEE International Geoscience and Remote Sensing Symposium: Sensing and Understanding Our Planet (IGARSS 2007), IEEE, 22652267, doi:10.1109/IGARSS.2007.4423292.

  • Frech, M., , Lange B. , , Mammen T. , , Seltmann J. , , Morehead C. , , and Rowan J. , 2013: Influence of a radome on antenna performance. J. Atmos. Oceanic Technol., 30, 313324, doi:10.1175/JTECH-D-12-00033.1.

    • Search Google Scholar
    • Export Citation
  • Galletti, M., 2013: Atmospheric radar. International Patent WO/2013/192308A1, filed 19 June 2013, and published 27 December 2013.

  • Galletti, M., , Zrnić D. S. , , Melnikov V. M. , , and Doviak R. J. , 2012: Degree of polarization at horizontal transmit: Theory and applications for weather radar. IEEE Trans. Geosci. Remote Sens., 50, 12911301, doi:10.1109/TGRS.2011.2167516.

    • Search Google Scholar
    • Export Citation
  • Galletti, M., , Zrnić D. S. , , Gekat F. , , and Goelz P. , 2014: Eigenvalue signal processing for weather radar polarimetry: Removing the bias induced by antenna coherent cross-channel coupling. IEEE Trans. Geosci. Remote Sens., 52, 76957707, doi:10.1109/TGRS.2014.2316821.

    • Search Google Scholar
    • Export Citation
  • Görsdorf, U., , Lehmann V. , , Bauer-Pfundstein M. , , Peters G. , , Vavriv D. , , Vinogradov V. , , and Volkov V. , 2015: A 35-GHz polarimetric Doppler radar for long-term observations of cloud parameters—Description of system and data processing. J. Atmos. Oceanic Technol., 32, 675690, doi:10.1175/JTECH-D-14-00066.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and et al. , 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational model using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898, doi:10.1175/BAMS-88-6-883.

    • Search Google Scholar
    • Export Citation
  • Kanareykin, D. B., , Pavlov N. F. , , and Potechin V. A. , 1966: Polarization of Radar Signals (in Russian). Soviet Radio Press, 440 pp.

  • Kanareykin, D. B., , Potechin V. A. , , and Shishkin I. F. , 1968: Marine Radio Polarimetry (in Russian). Sudostroenie, 328 pp.

  • Kollias, P., , Clothiaux E. E. , , Miller M. A. , , Albrecht B. A. , , Stephens G. L. , , and Ackerman T. P. , 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 1608–1624, doi:10.1175/BAMS-88-10-1608.

    • Search Google Scholar
    • Export Citation
  • Lohmeier, S. P., , Sekelsky S. M. , , Firda J. M. , , Sadowy G. A. , , and McIntosh R. E. , 1997: Classification of particles in stratiform clouds using the 33 and 95 GHz polarimetric cloud profiling radar system (CPRS). IEEE Trans. Geosci. Remote Sens., 35, 256270, doi:10.1109/36.563264.

    • Search Google Scholar
    • Export Citation
  • Martner, B. E., , and Moran K. P. , 2001: Using cloud radar polarization measurements to evaluate stratus cloud and insect echoes. J. Geophys. Res., 106, 48914897, doi:10.1029/2000JD900623.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1991: Theoretical study of radar polarization parameters obtained from cirrus clouds. J. Atmos. Sci., 48, 10621070, doi:10.1175/1520-0469(1991)048<1062:TSORPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2015: Evaluations of the spheroidal particle model for describing cloud radar depolarization ratios of ice hydrometeors. J. Atmos. Oceanic Technol., 32, 865–879, doi:10.1175/JTECH-D-14-00115.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., , and Kropfli R. A. , 1993: Cirrus cloud studies with elliptically polarized Ka-band radar signals: A suggested approach. J. Atmos. Oceanic Technol., 10, 684692, doi:10.1175/1520-0426(1993)010<0684:CCSWEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., , Reinking R. F. , , Kropfli R. A. , , Martner B. E. , , and Bartram B. W. , 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, doi:10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., , Mace G. G. , , Marchand R. , , Shupe M. D. , , Hallar A. G. , , and McCubbin I. B. , 2012: Observations of ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode. J. Atmos. Oceanic Technol., 29, 9891008, doi:10.1175/JTECH-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • McCormick, G. C., , and Hendry A. , 1975: Principles for the radar determination of the polarization properties of precipitation. Radio Sci., 10, 421434, doi:10.1029/RS010i004p00421.

    • Search Google Scholar
    • Export Citation
  • Mudukutore, A., , Chandrasekar V. , , and Mueller E. A. , 1995: The differential phase pattern of the CSU CHILL radar antenna. J. Atmos. Oceanic Technol., 12, 1120, doi:10.1175/1520-0426(1995)012<1120:TDPPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nghiem, S. V., , Yueh S. H. , , Kwok R. , , and Li F. K. , 1992: Symmetry properties in polarimetric remote sensing. Radio Sci., 27, 693711, doi:10.1029/92RS01230.

    • Search Google Scholar
    • Export Citation
  • Park, H., , Ryzhkov A. V. , , Zrnić D. S. , , and Kim K.-E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Rambukkange, M. P., , Verlinde J. , , Eloranta E. W. , , Flynn C. J. , , and Clothiaux E. E. , 2011: Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds. IEEE Geosci. Remote Sens. Lett., 8, 108112, doi:10.1109/LGRS.2010.2052781.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2001: Interpretation of polarimetric radar covariance matrix for meteorological scatterers: Theoretical analysis. J. Atmos. Oceanic Technol., 18, 315328, doi:10.1175/1520-0426(2001)018<0315:IOPRCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Zrnić D. S. , , Hubbert J. C. , , Bringi V. N. , , Vivekanandan J. , , and Brandes E. A. , 2002: Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. J. Atmos. Oceanic Technol., 19, 340354, doi:10.1175/1520-0426-19.3.340.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Schuur T. J. , , Burgess D. W. , , Heinselman P. L. , , Giangrande S. E. , , and Zrnić D. S. , 2005a: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Schuur T. J. , , Burgess D. W. , , and Zrnić D. S. , 2005b: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, doi:10.1175/JAM2235.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and et al. , 2008: A focus on mixed-phase clouds: The status of ground-based observational methods. Bull. Amer. Meteor. Soc., 89, 1549–1562, doi:10.1175/2008BAMS2378.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., , Zrni D. S. , , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tatarinov, V. N., , and Tatarinov S. V. , 2011: A statistical theory of the electromagnetic field polarization parameters at the scattering by distributed radar objects. Wave Propagation, A. Petrin, Ed., InTech, 513–538 pp.

  • Vig, J. R., 1992: Introduction to quartz frequency standards. Revision 1, Army Research Laboratory Research and Development Tech. Rep. SLCET-TR-92-1, 56 pp. [Available online at www.dtic.mil/dtic/tr/fulltext/u2/a256373.pdf.]

  • Wolde, M., , and Vali G. , 2001a: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence on crystal form. J. Atmos. Sci., 58, 828841, doi:10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolde, M., , and Vali G. , 2001b: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part II: Frequencies of occurrence. J. Atmos. Sci., 58, 842849, doi:10.1175/1520-0469(2001)058<0842:PSFICO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., , and Ryzhkov A. V. , 1998: Observations of insects and birds with a polarimetric radar. IEEE Trans. Geosci. Remote Sens., 36, 661668, doi:10.1109/36.662746.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., , Doviak R. , , Zhang G. , , and Ryzhkov A. , 2010: Bias in differential reflectivity due to cross coupling through the radiation patterns of polarimetric weather radars. J. Atmos. Oceanic Technol., 27, 16241637, doi:10.1175/2010JTECHA1350.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 163 161 12
PDF Downloads 82 82 6

Effects of Antenna Patterns on Cloud Radar Polarimetric Measurements

View More View Less
  • 1 Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
  • | 2 METEK GmbH, Elmshorn, Germany
  • | 3 Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This paper presents an experimental analysis of the antenna system effects on polarimetric measurements conducted with cloud radars operating in the linear depolarization ratio (LDR) mode. Amplitude and phase of the copolar and cross-polar antenna patterns are presented and utilized. The patterns of two antennas of different quality were measured at the Hungriger Wolf airport near Hohenlockstedt, Germany, during the period from 28 January to 1 February 2014. For the measurements a test transmitter mounted on a tower and the scanning 35-GHz (Ka band) cloud radar MIRA-35, manufactured by METEK GmbH and operated in the receiving mode, were used. The integrated cross-polarization ratios (ICPR) are calculated for both antennas and compared with those measured in light rain. Correction algorithms for observed LDR and the co-cross-channel correlation coefficient ρ are presented. These algorithms are aimed at removing/mitigating polarization cross-coupling effects that depend on the quality of radar hardware. Thus, corrected LDR and ρ are primarily influenced by scatterer properties. The corrections are based on the decomposition of the coherency matrix of the received signals into fully polarized and nonpolarized components. The correction brings LDR values and the co-cross-channel correlation coefficients from two radars with different antenna systems to a close agreement, thus effectively removing hardware-dependent biases. Uncertainties of the correction are estimated as 3 dB for LDR in the range from −30 to −10 dB. In clouds, the correction of the co-cross-channel correlation coefficient ρ results in near-zero values for both vertically pointed radars.

Denotes Open Access content.

Corresponding author address: Alexander Myagkov, Remote Sensing of Atmospheric Processes, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany. E-mail: myagkov@tropos.de

Abstract

This paper presents an experimental analysis of the antenna system effects on polarimetric measurements conducted with cloud radars operating in the linear depolarization ratio (LDR) mode. Amplitude and phase of the copolar and cross-polar antenna patterns are presented and utilized. The patterns of two antennas of different quality were measured at the Hungriger Wolf airport near Hohenlockstedt, Germany, during the period from 28 January to 1 February 2014. For the measurements a test transmitter mounted on a tower and the scanning 35-GHz (Ka band) cloud radar MIRA-35, manufactured by METEK GmbH and operated in the receiving mode, were used. The integrated cross-polarization ratios (ICPR) are calculated for both antennas and compared with those measured in light rain. Correction algorithms for observed LDR and the co-cross-channel correlation coefficient ρ are presented. These algorithms are aimed at removing/mitigating polarization cross-coupling effects that depend on the quality of radar hardware. Thus, corrected LDR and ρ are primarily influenced by scatterer properties. The corrections are based on the decomposition of the coherency matrix of the received signals into fully polarized and nonpolarized components. The correction brings LDR values and the co-cross-channel correlation coefficients from two radars with different antenna systems to a close agreement, thus effectively removing hardware-dependent biases. Uncertainties of the correction are estimated as 3 dB for LDR in the range from −30 to −10 dB. In clouds, the correction of the co-cross-channel correlation coefficient ρ results in near-zero values for both vertically pointed radars.

Denotes Open Access content.

Corresponding author address: Alexander Myagkov, Remote Sensing of Atmospheric Processes, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany. E-mail: myagkov@tropos.de
Save