• Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , and Gregg M. C. , 2001: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106, 16 94716 968, doi:10.1029/2000JC000370.

    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., , Llewellyn Smith S. G. , , and Young W. R. , 1998: Enhanced dispersion of near-inertial waves in an idealized geostrophic flow. J. Mar. Res., 56, 140, doi:10.1357/002224098321836091.

    • Search Google Scholar
    • Export Citation
  • Bracewell, R. N., 1965: The Fourier Transform and Its Applications. McGraw-Hill Electrical and Electronic Engineering Series, McGraw-Hill, 381 pp.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , and Giese B. S. , 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., , Pizarro O. , , and Rojas W. , 2008: Global climatology of near-inertial current characteristics from Lagrangian observations. Geophys. Res. Lett., 35, L13603, doi:10.1029/2008GL034060.

    • Search Google Scholar
    • Export Citation
  • Elipot, S., , and Lumpkin R. , 2008: Spectral description of oceanic near-surface variability. Geophys. Res. Lett., 35, L05606, doi:10.1029/2007GL032874.

    • Search Google Scholar
    • Export Citation
  • Furuichi, N., , Hibiya T. , , and Niwa Y. , 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, doi:10.1029/2008JC004768.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962971, doi:10.1175/1520-0485(2001)031<0962:WITNIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, doi:10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1984: On the response of the ocean to a travelling storm: Parameters and scales. J. Phys. Oceanogr., 14, 5978, doi:10.1175/1520-0485(1984)014<0059:OTROTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jing, Z., , and Wu L. , 2014: Intensified diapycnal mixing in the midlatitude western boundary current. Sci. Rep., 4, 7412, doi:10.1038/srep07412.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., , Briegleb B. P. , , Danabasoglu G. , , Large W. G. , , Norton N. J. , , Jayne S. R. , , Alford M. H. , , and Bryan F. O. , 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, doi:10.1175/JCLI-D-12-00181.1.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , Ebisuzaki W. , , Woollen J. , , Yang S.-K. , , Hnilo J. J. , , Fiorino M. , , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and Yeager S. G. , 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , McWilliams J. C. , , and Doney S. C. , 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lee, D.-K., , and Niiler P. P. , 1998: The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103, 75797591, doi:10.1029/97JC03200.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., , Kuo Y.-H. , , and Tribbia J. , 2006: Research needs and directions of regional climate modeling using WRF and CCSM. Bull. Amer. Meteor. Soc., 87, 17471751, doi:10.1175/BAMS-87-12-1747.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., , Arango H. G. , , Di Lorenzo E. , , Cornuelle D. B. , , Miller A. J. , , and Nielson D. J. , 2004: A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Modell., 7, 227258, doi:10.1016/j.ocemod.2003.11.001.

    • Search Google Scholar
    • Export Citation
  • Munk, W., , and Wunsch C. , 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nagasawa, M., , Niwa Y. , , and Hibiya T. , 2000: Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105, 13 93313 943, doi:10.1029/2000JC900019.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., , and Hibiya T. , 1999: Response of the deep ocean internal wave field to traveling midlatitude storms as observed in long-term current measurements. J. Geophys. Res., 104, 10 98110 989, doi:10.1029/1999JC900046.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., , and Farrar J. T. , 2006: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. I, 53, 530, doi:10.1016/j.dsr2.2005.10.017.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., , and Millard R. C. Jr., 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813821, doi:10.1016/0011-7471(70)90043-4.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , Garabato A. C. N. , , Huussen T. N. , , Sloyan B. M. , , and Waterman S. , 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, doi:10.1002/2013JC008979.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1983: Internal wave wake of a travelling storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr., 13, 949965, doi:10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., , Weller R. A. , , and Pinkel R. , 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Rath, W., , Greatbatch R. J. , , and Zhai X. , 2013: Reduction of near-inertial energy through the dependence of wind stress on the ocean-surface velocity. J. Geophys. Res. Oceans, 118, 27612773, doi:10.1002/jgrc.20198.

    • Search Google Scholar
    • Export Citation
  • Rath, W., , Greatbatch R. J. , , and Zhai X. , 2014: On the spatial and temporal distribution of near-inertial energy in the Southern Ocean. J. Geophys. Res. Oceans, 119, 359376, doi:10.1002/2013JC009246.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and McWilliams J. C. , 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , and Hibiya T. , 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, doi:10.1029/2001GL014422.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , and Ferrari R. , 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., , Greatbatch R. J. , , and Zhao J. , 2005: Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys. Res. Lett., 32, L18602, doi:10.1029/2005GL023643.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., , Greatbatch R. J. , , and Eden C. , 2007: Spreading of near-inertial energy in a 1/12° model of the North Atlantic Ocean. Geophys. Res. Lett., 34, L10609, doi:10.1029/2007GL029895.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., , Greatbatch R. J. , , Eden C. , , and Hibiya T. , 2009: On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. J. Phys. Oceanogr., 39, 30403045, doi:10.1175/2009JPO4259.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., , Johnson H. L. , , Marshall D. P. , , and Wunsch C. , 2012: On the wind power input to the ocean general circulation. J. Phys. Oceanogr., 42, 13571365, doi:10.1175/JPO-D-12-09.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 73 8
PDF Downloads 53 53 3

Improve the Simulations of Near-Inertial Internal Waves in the Ocean General Circulation Models

View More View Less
  • 1 Department of Oceanography, Texas A&M University, College Station, Texas, and Key Laboratory of Physical Oceanography, and Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China
  • | 2 Key Laboratory of Physical Oceanography, and Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China
  • | 3 Department of Oceanography, Texas A&M University, College Station, Texas
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The near-inertial wind work and near-inertial internal waves (NIWs) in the ocean have been extensively studied using ocean general circulation models (OGCMs) forced by 6-hourly winds or wind stress obtained from atmospheric reanalysis data. However, the OGCMs interpolate the reanalysis winds or wind stress linearly onto each time step, which partially filters out the wind stress variance in the near-inertial band. In this study, the influence of the linear interpolation on the near-inertial wind work and NIWs is quantified using an eddy-resolving (°) primitive equation ocean model. In addition, a new interpolation method is proposed—the sinc-function interpolation—that overcomes the shortages of the linear interpolation.

It is found that the linear interpolation of 6-hourly winds significantly underestimates the near-inertial wind work and NIWs at the midlatitudes. The underestimation of the near-inertial wind work and near-inertial kinetic energy is proportional to the loss of near-inertial wind stress variance due to the linear interpolation. This further weakens the diapycnal mixing in the ocean due to the reduced near-inertial shear variance. Compared to the linear interpolation, the sinc-function interpolation retains all the wind stress variance in the near-inertial band and yields correct magnitudes for the near-inertial wind work and NIWs at the midlatitudes.

Corresponding author address: Zhao Jing, Department of Oceanography, Texas A&M University, O & M Building, Room 612, MS 3146, College Station, TX 77843. E-mail: jingzhao198763@tamu.edu

Abstract

The near-inertial wind work and near-inertial internal waves (NIWs) in the ocean have been extensively studied using ocean general circulation models (OGCMs) forced by 6-hourly winds or wind stress obtained from atmospheric reanalysis data. However, the OGCMs interpolate the reanalysis winds or wind stress linearly onto each time step, which partially filters out the wind stress variance in the near-inertial band. In this study, the influence of the linear interpolation on the near-inertial wind work and NIWs is quantified using an eddy-resolving (°) primitive equation ocean model. In addition, a new interpolation method is proposed—the sinc-function interpolation—that overcomes the shortages of the linear interpolation.

It is found that the linear interpolation of 6-hourly winds significantly underestimates the near-inertial wind work and NIWs at the midlatitudes. The underestimation of the near-inertial wind work and near-inertial kinetic energy is proportional to the loss of near-inertial wind stress variance due to the linear interpolation. This further weakens the diapycnal mixing in the ocean due to the reduced near-inertial shear variance. Compared to the linear interpolation, the sinc-function interpolation retains all the wind stress variance in the near-inertial band and yields correct magnitudes for the near-inertial wind work and NIWs at the midlatitudes.

Corresponding author address: Zhao Jing, Department of Oceanography, Texas A&M University, O & M Building, Room 612, MS 3146, College Station, TX 77843. E-mail: jingzhao198763@tamu.edu
Save