• Banakh, V. A., , Smalikho I. N. , , Köpp F. , , and Werner C. , 1995: Representativeness of wind measurements with a cw Doppler lidar in the atmospheric boundary layer. Appl. Optics, 34, 2055–2067, doi:10.1364/AO.34.002055.

  • Banta, R. M., , Newsom R. K. , , Lundquist J. K. , , Pichugina Y. L. , , Coulter R. L. , , and Mahrt L. , 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, doi:10.1023/A:1019992330866.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., , Pichugina Y. L. , , and Brewer W. A. , 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, doi:10.1175/JAS3776.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., , Pichugina Y. L. , , Kelley N. D. , , Jonkman B. , , and Brewer W. A. , 2008: Doppler lidar measurements of the Great Plains low-level jet: Applications to wind energy. IOP Conf. Ser.: Earth Environ. Sci., 1, 012020, doi:10.1088/1755-1307/1/1/012020.

  • Banta, R. M., , Pichugina Y. L. , , Kelley N. D. , , Hardesty R. M. , , and Brewer W. A. , 2013: Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar. Bull. Amer. Meteor. Soc., 94, 883902, doi:10.1175/BAMS-D-11-00057.1.

    • Search Google Scholar
    • Export Citation
  • Bingöl, F., , Mann J. , , and Larsen G. C. , 2010: Light detection and ranging measurements of wake dynamics part I: One-dimensional scanning. Wind Energy, 13, 5161, doi:10.1002/we.352.

    • Search Google Scholar
    • Export Citation
  • Chai, T., , Lin C.-L. , , and Newsom R. K. , 2004: Retrieval of microscale flow structures from high-resolution Doppler lidar data using an adjoint model. J. Atmos. Sci., 61, 15001520, doi:10.1175/1520-0469(2004)061<1500:ROMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Choukulkar, A., , Calhoun R. , , Billings B. , , and Doyle J. , 2012: Investigation of a complex nocturnal flow in Owens Valley, California, using coherent Doppler lidar. Bound.-Layer Meteor., 144, 359378, doi:10.1007/s10546-012-9729-2.

    • Search Google Scholar
    • Export Citation
  • Clifton, A., , Schreck S. , , Scott G. , , Kelley N. , , and Lundquist J. K. , 2013: Turbine inflow characterization at the National Wind Technology Center. J. Sol. Energy Eng., 135, 031017, doi:10.1115/1.4024068.

    • Search Google Scholar
    • Export Citation
  • Demmel, J. W., 1997: Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics, 419 pp.

  • Eberhard, W. L., , Cupp R. E. , , and Healy K. R. , 1989: Doppler lidar measurement of profiles of turbulence and momentum flux. J. Atmos. Oceanic Technol., 6, 809819, doi:10.1175/1520-0426(1989)006<0809:DLMOPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., , Harris M. , , and Banta R. M. , 2007: Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteor. Z., 16, 337347, doi:10.1127/0941-2948/2007/0225.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 1997: Effects of wind turbulence on coherent Doppler lidar performance. J. Atmos. Oceanic Technol., 14, 5475, doi:10.1175/1520-0426(1997)014<0054:EOWTOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., , and Cornman L. , 2002: Estimating spatial velocity statistics with coherent Doppler lidar. J. Atmos. Oceanic Technol., 19, 355366, doi:10.1175/1520-0426-19.3.355.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., , Hannon S. , , and Henderson S. , 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor., 86, 233256, doi:10.1023/A:1000676021745.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., , Xu M. , , and Eberhard W. L. , 1992: Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data. J. Geophys. Res., 97, 18 40918 423, doi:10.1029/91JD03174.

    • Search Google Scholar
    • Export Citation
  • Gottschall, J., , Courtney M. S. , , Wagner R. , , Jørgensen H. E. , , and Antoniou I. , 2012: Lidar profilers in the context of wind energy—A verification procedure for traceable measurements. Wind Energy, 15, 147159, doi:10.1002/we.518.

    • Search Google Scholar
    • Export Citation
  • Hardesty, R. M., , Brewer W. A. , , and Rye B. J. , 1997: Estimation of wind velocity and backscatter signal intensity from Doppler lidar returns. Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers, 1997, Vol. 1, IEEE, 269273.

  • Hasager, C. B., , Stein D. , , Courtney M. , , Peña A. , , Mikkelsen T. , , Stickland M. , , and Oldroyd A. , 2013: Hub height ocean winds over the North Sea observed by the NORSEWInD lidar array: Measuring techniques, quality control, and data management. Remote Sens., 5, 42804303, doi:10.3390/rs5094280.

    • Search Google Scholar
    • Export Citation
  • Hoaglin, D. C., , Mosteller F. , , and Tukey J. W. , 1983: Understanding Robust and Exploratory Data Analysis. Wiley Series in Probability and Mathematical Statistics, Vol. 84, Wiley, 447 pp.

  • IEC, 2005a: Wind turbines—Part 1: Design requirement. IEC 61400-1, 3rd ed. International Electrotechnical Commission Publ., 179 pp.

  • IEC, 2005b: Wind turbines—Part 12-1: Power performance measurements of electricity producing wind turbines. IEC 61400-12, International Electrotechnical Commission Publ., 90 pp.

  • Iungo, G. V., , Wu Y.-T. , , and Porté-Agel F. , 2013: Field measurements of wind turbine wakes with lidars. J. Atmos. Oceanic Technol., 30, 274287, doi:10.1175/JTECH-D-12-00051.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, R., , Choukulkar A. , , Calhoun R. , , Fine J. , , Oliver A. , , and Barr K. , 2013: Coherent Doppler lidar for wind farm characterization. Wind Energy, 16, 189206, doi:10.1002/we.539.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., , Lenschow D. , , and Mayor S. , 2006: Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound.-Layer Meteor., 121, 521536, doi:10.1007/s10546-006-9077-1.

    • Search Google Scholar
    • Export Citation
  • Lyons, L., 1991: A Practical Guide to Data Analysis for Physical Science Students. Cambridge University Press, 112 pp.

  • Mann, J., , Ott S. , , Jørgensen B. H. , , and Frank H. P. , 2002: WAsP Engineering 2000. Risø National Laboratory Rep. Risø-R-1356(EN), 90 pp. [Available online at http://orbit.dtu.dk/fedora/objects/orbit:90800/datastreams/file_7726842/content.]

  • Menzies, R. T., , and Hardesty R. M. , 1989: Coherent Doppler lidar for measurements of wind fields. Proc. IEEE, 77, 449462, doi:10.1109/5.24130.

    • Search Google Scholar
    • Export Citation
  • Myers, R. H., 1990: Classical and Modern Regression with Applications. 2nd ed. Duxbury Classic Series, Duxbury Press, 488 pp.

  • Panofsky, H. A., , and Dutton J. A. , 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley & Sons, 397 pp.

  • Peña, A., , Hasager C. B. , , Gryning S. E. , , Courtney M. , , Antoniou I. , , and Mikkelsen T. , 2009: Offshore wind profiling using light detection and ranging measurements. Wind Energy, 12, 105124, doi:10.1002/we.283.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., , Banta R. M. , , Brewer W. A. , , Sandberg S. P. , , and Hardesty R. M. , 2012: Doppler lidar–based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications. J. Appl. Meteor. Climatol., 51, 327349, doi:10.1175/JAMC-D-11-040.1.

    • Search Google Scholar
    • Export Citation
  • Rebmann, C., , Kolle O. , , Heinesch B. , , Queck R. , , Ibrom A. , , and Aubinet M. , 2012: Data acquisition and flux calculations. Eddy Covariance: A Practical Guide to Measurement and Data Analysis, M. Aubinet, T. Vesala, and D. Papale, Eds., Springer, 59–83.

  • Rye, B. J., , and Hardesty R. M. , 1997: Detection techniques for validating Doppler estimates in heterodyne lidar. Appl. Opt., 36, 19401951, doi:10.1364/AO.36.001940.

    • Search Google Scholar
    • Export Citation
  • Sathe, A., , and Mann J. , 2012: Turbulence measurements using six lidar beams. Extended Abstracts, 16th Int. Symp. for the Advancement of Boundary-Layer Remote Sensing, Boulder, CO, ISARS, 302305.

  • Schwiesow, R., , Köpp P. , , and Werner C. , 1985: Comparison of CW-lidar-measured wind values obtained by full conical scan, conical sector scan and two-point techniques. J. Atmos. Oceanic Technol., 2, 314, doi:10.1175/1520-0426(1985)002<0003:COCLMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simley, E., , Pao L. Y. , , Frehlich R. , , Jonkman B. , , and Kelley N. , 2014: Analysis of light detection and ranging wind speed measurements for wind turbine control. Wind Energy, 17, 413433, doi:10.1002/we.1584.

    • Search Google Scholar
    • Export Citation
  • Stawiarski, C., , Träumner K. , , Knigge C. , , and Calhoun R. , 2013: Scopes and challenges of dual-Doppler lidar wind measurements—An error analysis. J. Atmos. Oceanic Technol., 30, 20442062, doi:10.1175/JTECH-D-12-00244.1.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Wagner, R., , Courtney M. , , Gottschall J. , , and Lindelöw-Marsden P. , 2011: Accounting for the speed shear in wind turbine power performance measurement. Wind Energy, 14, 9931004, doi:10.1002/we.509.

    • Search Google Scholar
    • Export Citation
  • Werner, C., 2005: Doppler wind lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, Ed., Springer Series in Optical Sciences, Vol. 102, Springer, 325–354.

  • Werner, C., and et al. , 2001: Wind infrared Doppler lidar instrument. Opt. Eng., 40, 115125, doi:10.1117/1.1335530.

  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 123 24
PDF Downloads 124 124 30

Wind Measurements from Arc Scans with Doppler Wind Lidar

View More View Less
  • 1 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
  • | 2 National Wind Technology Center, National Renewable Energy Laboratory, Golden, Colorado
  • | 3 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
© Get Permissions
Restricted access

Abstract

Defining optimal scanning geometries for scanning lidars for wind energy applications remains an active field of research. This paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. The radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

Corresponding author address: Hui Wang, Sibley School of Mechanical and Aerospace Engineering, Cornell University, 105 Upson Hall, Ithaca, NY 14853. E-mail: hw524@cornell.edu

Abstract

Defining optimal scanning geometries for scanning lidars for wind energy applications remains an active field of research. This paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. The radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

Corresponding author address: Hui Wang, Sibley School of Mechanical and Aerospace Engineering, Cornell University, 105 Upson Hall, Ithaca, NY 14853. E-mail: hw524@cornell.edu
Save