• Angelini, F., , Barnaba F. , , Landi T. C. , , Caporaso L. , , and Gobbi G. P. , 2009: Study of atmospheric aerosols and mixing layer by LIDAR. Radiat. Prot. Dosim., 137, 275279, doi:10.1093/rpd/ncp219.

    • Search Google Scholar
    • Export Citation
  • ARM, 1994: Balloon-borne sounding system (SONDEWNPN), Southern Great Plains (SGP) Central Facility. ARM Climate Research Facility Data Archive, subset used: January 2006–December 2010, accessed 11 February 2011, doi:10.5439/1021460.

  • ARM, 2004: Raman lidar vertical profiles (10RLPROFBE1NEWS), Southern Great Plains (SGP) Central Facility. ARM Climate Research Facility Data Archive, subset used: January 2006–December 2010, accessed 11 February 2011, doi:10.5439/1027250.

  • Baars, H., , Ansmann A. , , Engelmann R. , , and Althausen D. , 2008: Continuous monitoring of the boundary-layer top with lidar. Atmos. Chem. Phys., 8, 72817296, doi:10.5194/acp-8-7281-2008.

    • Search Google Scholar
    • Export Citation
  • Baxter, R. A., 1991: Determination of mixing heights from data collected during the 1985 SCCCAMP field program. J. Appl. Meteor., 30, 598606, doi:10.1175/1520-0450(1991)030<0598:DOMHFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., 1997: Mixing height estimation from sodar data—A critical discussion. Atmos. Environ., 31, 39413952, doi:10.1016/S1352-2310(97)00231-8.

    • Search Google Scholar
    • Export Citation
  • Boers, R., , Eloranta E. W. , , and Coulter R. L. , 1984: Lidar observations of mixed layer dynamics: Tests of parameterized entrainment models of mixed layer growth rate. J. Climate Appl. Meteor., 23, 247266, doi:10.1175/1520-0450(1984)023<0247:LOOMLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, K. J., , Lenschow D. H. , , Oncley S. P. , , Kiemle C. , , Ehret G. , , Giez A. , , and Mann J. , 1997: Role of entrainment in surface-atmosphere interaction over the boreal forest. J. Geophys. Res., 102, 29 21929 230, doi:10.1029/97JD02236.

    • Search Google Scholar
    • Export Citation
  • Davis, K. J., , Gamage N. , , Hagelberg C. R. , , Kiemle C. , , Lenschow D. H. , , and Sullivan P. P. , 2000: An objective method for deriving atmospheric structure from airborne lidar observations. J. Atmos. Oceanic Technol., 17, 14551468, doi:10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., , Schäfer K. , , and Münkel C. , 2008: Surface-based remote sensing of the mixing-layer height—A review. Meteor. Z., 17, 621630, doi:10.1127/0941-2948/2008/0312.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and et al. , 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman over the Southern Great Plains. J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., , Pelon J. , , Flamant P. H. , , and Durand P. , 1997: Lidar determination of the entrainment zone thickness at the top of the unstable air in atmospheric boundary layer. Bound.-Layer Meteor., 83, 247284, doi:10.1023/A:1000258318944.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., , Blair F. H. , , Bisson S. E. , , and Turner D. D. , 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 49794990, doi:10.1364/AO.37.004979.

    • Search Google Scholar
    • Export Citation
  • Goulden, M. L., , Munger J. W. , , Fan S.-M. , , Daube B. C. , , and Wofsy S. C. , 1996: Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biol., 2, 169182, doi:10.1111/j.1365-2486.1996.tb00070.x.

    • Search Google Scholar
    • Export Citation
  • Granados-Muñoz, M. J., , Navas-Guzmán F. , , Bravo-Aranda J. A. , , Guerrero-Rascado J. L. , , Lyamani H. , , Fernández-Gálvez J. , , and Alados-Arboledas L. , 2012: Automatic determination of the planetary boundary layer height using lidar: One-year analysis over southeastern Spain. J. Geophys. Res., 117, D18208, doi:10.1029/2012JD017524.

    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., and et al. , 2012: Evaluation of mixing-height retrievals from automated profiling lidars and ceilometers in view of future integrated networks in Europe. Bound.-Layer Meteor., 143, 4975, doi:10.1007/s10546-011-9643-z.

    • Search Google Scholar
    • Export Citation
  • Hageli, P., , Steyn D. G. , , and Strawbridge K. B. , 2000: Spatial and temporal variability of mixed-layer depth and entrainment zone thickness. Bound.-Layer Meteor., 97, 4771, doi:10.1023/A:1002790424133.

    • Search Google Scholar
    • Export Citation
  • Hennemuth, B., , and Lammert A. , 2006: Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Bound.-Layer Meteor., 120, 181200, doi:10.1007/s10546-005-9035-3.

    • Search Google Scholar
    • Export Citation
  • Jeričević, A., , and Grisogono G. , 2006: The critical bulk Richardson number in urban areas: Verification and application in a numerical weather prediction model. Tellus, 58A, 1927, doi:10.1111/j.1600-0870.2006.00153.x.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M., 2005: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Amer. Meteor. Soc., 86, 225233, doi:10.1175/BAMS-86-2-225.

    • Search Google Scholar
    • Export Citation
  • Liu, S., , and Liang X. , 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, doi:10.1175/2010JCLI3552.1.

    • Search Google Scholar
    • Export Citation
  • Luo, T., , Yuan R. , , and Wang Z. , 2014: Lidar-based remote sensing of atmospheric boundary height over land and ocean. Atmos. Meas. Tech., 7, 173182, doi:10.5194/amt-7-173-2014.

    • Search Google Scholar
    • Export Citation
  • Martucci, G., , Matthey R. , , and Mitev V. , 2007: Comparison between backscatter lidar and radiosonde measurements of the diurnal and nocturnal stratification in the lower troposphere. J. Atmos. Oceanic Technol., 24, 12311244, doi:10.1175/JTECH2036.1.

    • Search Google Scholar
    • Export Citation
  • Melfi, S. H., , Spinhirne J. D. , , Chou S. H. , , and Palm S. P. , 1985: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor., 24, 806821, doi:10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Menut, L., , Flamant C. , , Pelon J. , , and Falmant P. H. , 1999: Urban boundary-layer height determination from lidar measurements over Paris area. Appl. Opt., 38, 945954, doi:10.1364/AO.38.000945.

    • Search Google Scholar
    • Export Citation
  • Milroy, C., and et al. , 2012: An assessment of pseudo-operational ground-based light detection and ranging sensors to determine the boundary-layer structure in the coastal atmosphere. Adv. Meteor., 2012, 929080, doi:10.1155/2012/929080.

    • Search Google Scholar
    • Export Citation
  • Pearson, G., , Davies F. , , and Collier C. , 2010: Remote sensing of the tropical rain forest boundary layer using pulsed Doppler lidar. Atmos. Chem. Phys., 10, 58915901, doi:10.5194/acp-10-5891-2010.

    • Search Google Scholar
    • Export Citation
  • Piironen, A. K., , and Eloranta E. W. , 1995: Convective boundary layer depths and cloud geometerical properties obtained from volume imaging lidar data. J. Geophys. Res., 100, 25 56925 576, doi:10.1029/94JD02604.

    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., and et al. , 2003: The ARM Program’s water vapor intensive observation periods—Overview, initial accomplishments, and future challenges. Bull. Amer. Meteor. Soc., 84, 217236, doi:10.1175/BAMS-84-2-217.

    • Search Google Scholar
    • Export Citation
  • Schmid, P., , and Niyogi D. , 2012: A method for estimating planetary boundary layer heights and its application over the ARM Southern Great Plains site. J. Atmos. Oceanic Technol., 29, 316322, doi:10.1175/JTECH-D-11-00118.1.

    • Search Google Scholar
    • Export Citation
  • Seibert, P., , Beyrich F. , , Gryning S. E. , , Joffre S. , , Rassumussen A. , , and Tercier P. , 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, doi:10.1016/S1352-2310(99)00349-0.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , Ao C. O. , , and Li K. , 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, doi:10.1029/2009JD013680.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , Zhang Y. , , Beljaars A. , , Golaz J.-C. , , Jacobson A. R. , , and Medeiros B. , 2012: Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res., 117, D17106, doi:10.1029/2012JD018143.

    • Search Google Scholar
    • Export Citation
  • Senff, C., , Bösenberg J. , , Peters G. , , and Schaberl T. , 1996: Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and radar-RASS: A case study. Contrib. Atmos. Phys., 69, 161176.

    • Search Google Scholar
    • Export Citation
  • Steyn, D. G., , Baldi M. , , and Hoff R. , 1999: The detection of mixed layer depth from lidar backscatter profiles. J. Amos. Oceanic Technol., 16, 953959, doi:10.1175/1520-0426(1999)016<0953:TDOMLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., , and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., , Ferrare R. A. , , Heilman Brasseur L. A. , , Feltz W. F. , , and Tooman T. P. , 2002: Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar. J. Atmos. Oceanic Technol., 19, 3750, doi:10.1175/1520-0426(2002)019<0037:AROWVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, D., , Li C. , , Lau A. K. , , and Li Y. , 2013: Long-term measurement of daytime atmospheric mixing layer height over Hong Kong. J. Geophys. Res. Atmos., 118, 24222433, doi:10.1002/jgrd.50251.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., , and Baklanov A. , 2002: Calculation of the height of stable boundary layers in practical applications. Bound.-Layer Meteor., 105, 389409, doi:10.1023/A:1020376832738.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 10
PDF Downloads 27 27 5

The Evaluation of a New Method to Detect Mixing Layer Heights Using Lidar Observations

View More View Less
  • 1 National Weather Service, Sterling, Virginia
  • | 2 Howard University, Washington, D.C.
© Get Permissions
Restricted access

Abstract

A new automatic mixing layer height detection method for lidar observations of aerosol backscatter profiles is presented and evaluated for robustness. The new detection method incorporates the strengths of Steyn et al.’s error function–ideal profile (ERF) method and Davis et al.’s wavelet covariance transform (WCT) method. These two methods are critical components of the new method, and their robustness is also evaluated and then contrasted to the new method. The new method is applied to aerosol backscatter observations in two ways: 1) by looking for the most realistic mixing height throughout the entire profile and 2) by searching for mixing height below significant elevated obscurations (e.g., clouds or aerosol layers). The first approach is referred to as the hybrid method and the second as the hybrid-lowest method. Coincident radiosounding observations of mixing heights are used to independently reference the lidar-based estimates.

There were 4030 cases examined over a 5-yr period for mixing heights. The efficacy of the lidar-based methods was determined based on diurnal, seasonal, stability, and sky obscuration conditions. Of these conditions, the hybrid method performed best for unstable and cloudy situations. It determined mixing heights reliably (less than ±0.30-km bias) for close to 70% of those cases. The hybrid-lowest method performed best in stable and clear-sky conditions; it determined mixing heights reliably for over 70% of those cases. The WCT method performed the best overall.

Corresponding author address: Micheal Hicks, National Weather Service, 43741 Weather Service Rd., Sterling, VA, 20166. E-mail: micheal.m.hicks@noaa.gov; ricardo.k.sakai@howard.edu; ejosgm@gmail.com

Abstract

A new automatic mixing layer height detection method for lidar observations of aerosol backscatter profiles is presented and evaluated for robustness. The new detection method incorporates the strengths of Steyn et al.’s error function–ideal profile (ERF) method and Davis et al.’s wavelet covariance transform (WCT) method. These two methods are critical components of the new method, and their robustness is also evaluated and then contrasted to the new method. The new method is applied to aerosol backscatter observations in two ways: 1) by looking for the most realistic mixing height throughout the entire profile and 2) by searching for mixing height below significant elevated obscurations (e.g., clouds or aerosol layers). The first approach is referred to as the hybrid method and the second as the hybrid-lowest method. Coincident radiosounding observations of mixing heights are used to independently reference the lidar-based estimates.

There were 4030 cases examined over a 5-yr period for mixing heights. The efficacy of the lidar-based methods was determined based on diurnal, seasonal, stability, and sky obscuration conditions. Of these conditions, the hybrid method performed best for unstable and cloudy situations. It determined mixing heights reliably (less than ±0.30-km bias) for close to 70% of those cases. The hybrid-lowest method performed best in stable and clear-sky conditions; it determined mixing heights reliably for over 70% of those cases. The WCT method performed the best overall.

Corresponding author address: Micheal Hicks, National Weather Service, 43741 Weather Service Rd., Sterling, VA, 20166. E-mail: micheal.m.hicks@noaa.gov; ricardo.k.sakai@howard.edu; ejosgm@gmail.com
Save