• Al-Sakka, H., , Boumahmoud A. , , Fradon B. , , Frasier S. J. , , and Tabary P. , 2013: A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars. J. Appl. Meteor. Climatol., 52, 23282344, doi:10.1175/JAMC-D-12-0236.1.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., , Baldini L. , , and Chandrasekar V. , 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, doi:10.1175/JAMC-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar Principals and Applications. Cambridge University Press, 636 pp.

  • Chandrasekar, V., , Keränen R. , , Lim S. , , and Moisseev D. , 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97111, doi:10.1016/j.atmosres.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., , and Rutledge S. A. , 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, doi:10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., , Rutledge S. A. , , Lim S. , , Chandrasekar V. , , and Thurai M. , 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52, 21622186, doi:10.1175/JAMC-D-12-0275.1.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., , and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Ishizaka, M., , Motoyoshi H. , , Nakai S. , , Shiina T. , , Kumakura T. , , and Muramoto K. , 2013: A new method for identifying the main type of hydrometeors contributing to snowfall from measured size–fall speed relationship. J. Meteor. Soc. Japan, 91, 747762, doi:10.2151/jmsj.2013-602.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1992: The effect of temperature on attenuation-correction schemes in rain using polarization propagation differential phase shift. J. Appl. Meteor., 31, 11061118, doi:10.1175/1520-0450(1992)031<1106:TEOTOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., 2003: Hydrometeor classification with a C-band polarimetric radar. Aust. Meteor. Mag., 52, 2331.

  • Kennedy, P. C., , and Rutledge S. A. , 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., , and Curry J. A. , 2005: Fall velocities of hydrometeors in the atmosphere: Refinements to a continuous analytical power low. J. Atmos. Sci., 62, 43434357, doi:10.1175/JAS3622.1.

    • Search Google Scholar
    • Export Citation
  • Kubo, M., , Seto K. , , Muramoto K. , , Fujiyoshi Y. , , Shinoda T. , , and Ohigashi T. , 2009: Shape classification of snow particle into snowflake and graupel using image processing. ICCAS-SICE 2009: Proceedings, IEEE, 5451–5456. [Available online at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5333205.]

  • Lim, S., , Chandrasekar V. , , and Bringi V. N. , 2005: Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens., 43, 792801, doi:10.1109/TGRS.2004.843077.

    • Search Google Scholar
    • Export Citation
  • Liu, H., , and Chandrasekar V. , 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, doi:10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., , and Hobbs P. V. , 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Maesaka, T., , Maki M. , , Iwanami K. , , Tsuchiya S. , , Kieda K. , , and Hoshi A. , 2011: Operational rainfall estimation by X-band MP radar network in MLIT, Japan. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., P11.142. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191685.html.]

  • Marzano, F. S., , Scaranari D. , , Celano M. , , Alberoni P. P. , , Vulpiani G. , , and Montopoli M. , 2006: Hydrometeor classification from dual-polarized weather radar: Extending fuzzy logic from S-band to C-band. Adv. Geosci., 7, 109114, doi:10.5194/adgeo-7-109-2006.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., , Scaranari D. , , Montopoli M. , , and Vulpiani G. , 2008: Supervised classification and estimation of hydrometeors from C-band dual-polarized radars: A Bayesian approach. IEEE Trans. Geosci. Remote Sens., 46, 8598, doi:10.1109/TGRS.2007.906476.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, S., , Ninomiya K. , , and Yoshizumi S. , 1971: Characteristic features of “Baiu” front associated with heavy rainfall. J. Meteor. Soc. Japan, 49, 267281.

    • Search Google Scholar
    • Export Citation
  • Matsuo, T., , and Sasyo Y. , 1981: Melting of snowflakes below freezing level in the atmosphere. J. Meteor. Soc. Japan, 59, 1025.

  • Matsuo, T., , Sasyo Y. , , and Sato Y. , 1981: Relationship between types of precipitation on the ground and surface meteorological elements. J. Meteor. Soc. Japan, 59, 462476.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and et al. , 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817, doi:10.1175/2009BAMS2507.1.

    • Search Google Scholar
    • Export Citation
  • Mizuno, H., 1992: Statistical characteristics of graupel precipitation over the Japan Island. J. Meteor. Soc. Japan, 70, 115121.

  • Murakami, M., , and Matsuo T. , 1990: Development of the hydrometeor videosonde. J. Atmos. Oceanic Technol., 7, 613620, doi:10.1175/1520-0426(1990)007<0613:DOTHV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muramoto, K., 1995: Determination of shape and fall velocity of raindrops by image processing. IEICE Trans. Inf. Syst., E78-D, 10511057. [Available online at http://search.ieice.org/bin/summary.php?id=e78-d_8_1051&category=D&year=1995&lang=E&abst=.]

    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1984: Characteristics of Baiu front as a predominant subtropical front in the summer northern hemisphere. J. Meteor. Soc. Japan, 62, 880894.

    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., , and Akiyama T. , 1992: Multi-scale features of Baiu, the summer monsoon over Japan and the East Asia. J. Meteor. Soc. Japan, 70, 467495.

    • Search Google Scholar
    • Export Citation
  • Oue, M., , Uyeda H. , , and Shusse Y. , 2010: Two types of precipitation particle distribution in convective cells accompanying a Baiu frontal rainband around Okinawa Island, Japan. J. Geophys. Res., 115, D02201, doi:10.1029/2009JD011957.

    • Search Google Scholar
    • Export Citation
  • Oue, M., , Ohigashi T. , , Tsuboki K. , , and Nakakita E. , 2015: Vertical distribution of precipitation particles in Baiu frontal stratiform intense rainfall around Okinawa Island, Japan. J. Geophys. Res. Atmos., 120, 56225637, doi:10.1002/2014JD022712.

    • Search Google Scholar
    • Export Citation
  • Park, H., , Ryzhkov A. V. , , Zrnić D. S. , , and Kim K.-E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., , and Heymsfield A. J. , 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, doi:10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shusse, Y., , Nakagawa K. , , Takahashi N. , , Satoh S. , , and Iguchi T. , 2009: Characteristics of polarimetric radar variables in three types of rainfalls in a Baiu front event over the East China Sea. J. Meteor. Soc. Japan, 87, 865875, doi:10.2151/jmsj.87.865.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., , Bluestein H. B. , , Zhang G. , , and Frasier S. J. , 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, doi:10.1175/2010JTECHA1356.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., , Zrnić D. S. , , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., and et al. , 2012: Development of a new videosonde observation system for in-situ precipitation particle measurements. SOLA, 8, 14, doi:10.2151/sola.2012-001.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , Matsuo M. , , Nakano E. , , Shigeto S. , , Yamaguchi K. , , and Nakakita E. , 2014: Graupel in the different developing stages of Baiu monsoon clouds observed by videosondes. Atmos. Res., 142, 100110, doi:10.1016/j.atmosres.2013.09.020.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1990: Near absence of lightning in tropical rainfall producing Micronesian thunderstorms. Geophys. Res. Lett., 17, 23812384, doi:10.1029/GL017i013p02381.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., , Miller L. J. , , Wiens K. C. , , and Rutledge S. A. , 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, doi:10.1175/JAS3585.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., , Rutledge S. A. , , Dolan B. , , Chandrasekar V. , , and Cheong B. L. , 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, doi:10.1175/JTECH-D-13-00119.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , Zrnic D. S. , , Ellis S. M. , , Oye R. , , Ryzhkov A. V. , , and Straka J. , 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , and Chandrasekar V. , 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, doi:10.1175/2009JTECHA1358.1.

    • Search Google Scholar
    • Export Citation
  • Yamada, H., , Uyeda H. , , Kikuchi K. , , Maki M. , , and Iwanami K. , 2004: Dual-Doppler radar observations on factors causing differences in the structure of snow clouds during winter monsoon surges. J. Meteor. Soc. Japan, 82, 179206, doi:10.2151/jmsj.82.179.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 132 132 24
PDF Downloads 134 134 29

A Hydrometeor Classification Method for X-Band Polarimetric Radar: Construction and Validation Focusing on Solid Hydrometeors under Moist Environments

View More View Less
  • 1 Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan
  • | 2 School of Electrical and Computer Engineering, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
  • | 3 National Institute of Technology, Ishikawa College, Tsubata, Japan
© Get Permissions
Restricted access

Abstract

A fuzzy-logic-based hydrometeor classification (HC) method for X-band polarimetric radar (X-pol), which is suitable for observation of solid hydrometeors under moist environments producing little or no hail, is constructed and validated. This HC method identifies the most likely hydrometeor at each radar sampling volume from eight categories: 1) drizzle, 2) rain, 3) wet snow aggregates, 4) dry snow aggregates, 5) ice crystals, 6) dry graupel, 7) wet graupel, and 8) rain–hail mixture. Membership functions are defined on the basis of previous studies. The HC method uses radar reflectivity Zh, differential reflectivity Zdr, specific differential phase Kdp, and correlation coefficient ρhv as its main inputs, and temperature with some consideration of relative humidity as supplemental information. The method is validated against ground and in situ observations of solid hydrometeors (dry graupel, dry snow aggregates, and ice crystals) under a moist environment. Observational data from a ground-based imaging system are used to validate the HC method for dry graupel and dry snow aggregates. For dry snow aggregates and ice crystals, the HC method is validated using simultaneous observations from a balloonborne instrument [hydrometeor videosonde (HYVIS)] and an X-pol range–height indicator directed toward the HYVIS. The HC method distinguishes effectively between dry graupel, dry snow aggregates, and ice crystals, and is therefore valid for HC under moist environments.

Denotes Open Access content.

Corresponding author address: Takeharu Kouketsu, Hydrospheric Atmospheric Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. E-mail: kouketsu@rain.hyarc.nagoya-u.ac.jp

Abstract

A fuzzy-logic-based hydrometeor classification (HC) method for X-band polarimetric radar (X-pol), which is suitable for observation of solid hydrometeors under moist environments producing little or no hail, is constructed and validated. This HC method identifies the most likely hydrometeor at each radar sampling volume from eight categories: 1) drizzle, 2) rain, 3) wet snow aggregates, 4) dry snow aggregates, 5) ice crystals, 6) dry graupel, 7) wet graupel, and 8) rain–hail mixture. Membership functions are defined on the basis of previous studies. The HC method uses radar reflectivity Zh, differential reflectivity Zdr, specific differential phase Kdp, and correlation coefficient ρhv as its main inputs, and temperature with some consideration of relative humidity as supplemental information. The method is validated against ground and in situ observations of solid hydrometeors (dry graupel, dry snow aggregates, and ice crystals) under a moist environment. Observational data from a ground-based imaging system are used to validate the HC method for dry graupel and dry snow aggregates. For dry snow aggregates and ice crystals, the HC method is validated using simultaneous observations from a balloonborne instrument [hydrometeor videosonde (HYVIS)] and an X-pol range–height indicator directed toward the HYVIS. The HC method distinguishes effectively between dry graupel, dry snow aggregates, and ice crystals, and is therefore valid for HC under moist environments.

Denotes Open Access content.

Corresponding author address: Takeharu Kouketsu, Hydrospheric Atmospheric Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. E-mail: kouketsu@rain.hyarc.nagoya-u.ac.jp
Save