• Alvarez, J. M., , Vaughan M. A. , , Hostetler C. A. , , Hunt W. H. , , and Winker D. M. , 2006: Calibration technique for polarization-sensitive lidars. J. Atmos. Oceanic Technol., 23, 683699, doi:10.1175/JTECH1872.1.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., , and Nakamura T. , 2002: Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature. Opt. Express, 10, 805817, doi:10.1364/OE.10.000805.

    • Search Google Scholar
    • Export Citation
  • Bevington, P., , and Robinson D. , 2002: Data Reduction and Error Analysis for the Physical Sciences. 3rd ed. McGraw-Hill, 336 pp.

  • Borg, L. A., , Holz R. E. , , and Turner D. D. , 2011: Investigating cloud radar sensitivity to optically thin cirrus using collocated Raman lidar observations. Geophys. Res. Lett., 38, L05807, doi:10.1029/2010GL046365.

    • Search Google Scholar
    • Export Citation
  • Bucholtz, A., 1995: Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt., 34, 27652773, doi:10.1364/AO.34.002765.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., , Hlavka D. L. , , Welton E. J. , , Flynn C. J. , , Turner D. D. , , Spinhirne J. D. , , Scott V. S. , , and Hwang I. H. , 2002: Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement Program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19, 431, doi:10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., , Sassen K. , , and Welton E. J. , 2008: Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles. J. Atmos. Oceanic Technol., 25, 685700, doi:10.1175/2007JTECHA1034.1.

    • Search Google Scholar
    • Export Citation
  • Carswell, A. I., , and Pal S. R. , 1980: Polarization anisotropy in lidar multiple scattering from clouds. Appl. Opt., 19, 41234126, doi:10.1364/AO.19.004123.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., , Mace G. G. , , Ackerman T. P. , , Kane T. J. , , Spinhirne J. D. , , and Scott V. S. , 1998: An automated algorithm for detection of hydrometeor returns in micropulse lidar data. J. Atmos. Oceanic Technol., 15, 10351042, doi:10.1175/1520-0426(1998)015<1035:AAAFDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., , Ackerman T. P. , , Mace G. G. , , Moran K. P. , , Marchand R. T. , , Miller M. A. , , and Martner B. E. , 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665, doi:10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., , Ackerman T. P. , , and Mace G. G. , 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107, 4714, doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., , Protat A. , , McFarlane S. A. , , Delanoë J. , , and Deng M. , 2013: Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm differences: Analysis using 3 years of ARM data at Darwin, Australia. J. Geophys. Res. Atmos., 118, 45494571, doi:10.1002/jgrd.50404.

    • Search Google Scholar
    • Export Citation
  • Cooney, J., , Orr J. , , and Tomasetti C. , 1969: Measurements separating the gaseous and aerosol components of laser atmospheric backscatter. Nature, 224, 10981099, doi:10.1038/2241098a0.

    • Search Google Scholar
    • Export Citation
  • Coulter, R., 2012: Micropulse lidar (MPL) handbook. U.S. Department of Energy Tech. Rep. DOE/SC-ARM/TR-019, 12 pp. [Available online at https://www.arm.gov/publications/tech_reports/handbooks/mpl_handbook.pdf.]

  • Davis, S., and et al. , 2010: In situ and lidar observations of tropopause subvisible cirrus clouds during TC4. J. Geophys. Res., 115, D00J17, doi:10.1029/2009JD013093.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., , and Yang P. , 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16, 12411247, doi:10.1175/1520-0442(2003)16<1241:TDOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dupont, J.-C., , Haeffelin M. , , Morille Y. , , Comstock J. M. , , Flynn C. , , Long C. N. , , Sivaraman C. , , and Newson R. K. , 2011: Cloud properties derived from two lidars over the ARM SGP site. Geophys. Res. Lett., 38, L08814, doi:10.1029/2010GL046274.

    • Search Google Scholar
    • Export Citation
  • Feldman, D. R., , L’Ecuyer T. S. , , Liou K. N. , , and Yung Y. L. , 2008: Remote sensing of tropical tropopause layer radiation balance using A-train measurements. J. Geophys. Res., 113, D21113, doi:10.1029/2008JD010158.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R., and et al. , 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains. J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , Hu Y. , , and Yang Q. , 2007: Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations. Geophys. Res. Lett., 34, L14813, doi:10.1029/2007GL030099.

    • Search Google Scholar
    • Export Citation
  • Gobbi, G. P., 1998: Polarization lidar returns from aerosols and thin clouds: A framework for the analysis. Appl. Opt., 37, 55055508, doi:10.1364/AO.37.005505.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., , Blair F. H. , , Bisson S. E. , , and Turner D. D. , 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 49794990, doi:10.1364/AO.37.004979.

    • Search Google Scholar
    • Export Citation
  • Grund, C. J., , and Eloranta E. W. , 1991: University of Wisconsin high spectral resolution lidar. Opt. Eng., 30, 612, doi:10.1117/12.55766.

    • Search Google Scholar
    • Export Citation
  • Hair, J. W., and et al. , 2008: Airborne High Spectral Resolution Lidar for profiling aerosol optical properties. Appl. Opt., 47, 67346752, doi:10.1364/AO.47.006734.

    • Search Google Scholar
    • Export Citation
  • Haladay, T., , and Stephens G. , 2009: Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations. J. Geophys. Res., 114, D00A25, doi:10.1029/2008JD010675.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., , and Illingworth A. J. , 2000: Deriving cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc., 126, 29032909, doi:10.1002/qj.49712656914.

    • Search Google Scholar
    • Export Citation
  • Holben, B., and et al. , 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, doi:10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Kingston, R., 1978: Detection of Optical and Infrared Radiation. Springer Series in Optical Sciences, Vol. 10, Springer-Verlag, 142 pp.

  • Liljegren, J. C., , and Lesht B. M. , 1996: Measurements of integrated water vapor and cloud liquid water from microwave radiometers at the DOE ARM Cloud and Radiation Testbed in the U.S. Southern Great Plains. IGARSS ’96: 1996 International Geoscience and Remote Sensing Symposium; Remote Sensing for a Sustainable Geoscience and Remote Sensing Symposium, Vol. 3, IEEE, 1675–1677.

  • Luo, Y., , Xu K.-M. , , Morrison H. , , McFarquhar G. M. , , Wang Z. , , and Zhang G. , 2008: Multi-layer Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity experiments. J. Geophys. Res., 113, D12208, doi:10.1029/2007JD009563.

    • Search Google Scholar
    • Export Citation
  • Massie, S. T., , Gille J. , , Craig C. , , Khosravi R. , , Barnett J. , , Read W. , , and Winker D. , 2010: HIRDLS and CALIPSO observations of tropical cirrus. J. Geophys. Res., 115, D00H11, doi:10.1029/2009JD012100.

    • Search Google Scholar
    • Export Citation
  • Matthais, V., and et al. , 2004: Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. Appl. Opt., 43, 961976, doi:10.1364/AO.43.000961.

    • Search Google Scholar
    • Export Citation
  • Measures, R. M., 1984: Laser Remote Sensing: Fundamentals and Applications. Wiley, 510 pp.

  • Melfi, S. H., 1972: Remote measurements of the atmosphere using Raman scattering. Appl. Opt., 11, 16051610, doi:10.1364/AO.11.001605.

    • Search Google Scholar
    • Export Citation
  • Murayama, T., and et al. , 2001: Ground-based network observation of Asian dust events of April 1998 in east Asia. J. Geophys. Res., 106, 18 34518 359, doi:10.1029/2000JD900554.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., 2009: Raman lidar (RL) handbook. U.S. Department of Energy Tech. Rep. DOE/SC-ARM/TR-038, 25 pp. [Available online at https://www.arm.gov/publications/tech_reports/handbooks/rl_handbook.pdf.]

  • Newsom, R. K., , Turner D. D. , , Mielke B. , , Clayton M. , , Ferrare R. , , and Sivaraman C. , 2009: Simultaneous analog and photon counting detection for Raman lidar. Appl. Opt., 48, 39033914, doi:10.1364/AO.48.003903.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., , Turner D. D. , , and Goldsmith J. E. M. , 2013: Long-term evaluation of temperature profiles measured by an operational Raman lidar. J. Atmos. Oceanic Technol., 30, 16161634, doi:10.1175/JTECH-D-12-00138.1.

    • Search Google Scholar
    • Export Citation
  • Oliver, B. M., 1965: Thermal and quantum noise. Proc. IEEE, 53, doi:10.1109/PROC.1965.3814.

  • Riihimaki, L. D., , McFarlane S. A. , , and Comstock J. M. , 2012: Climatology and formation of tropical midlevel clouds at the Darwin ARM site. J. Climate, 25, 68356850, doi:10.1175/JCLI-D-11-00599.1.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 18481866, doi:10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 2002: Indirect climate forcing over the western US from Asian dust storms. Geophys. Res. Lett., 29, 103-1103-4, doi:10.1029/2001GL014051.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2002: The CloudSat mission and the A-Train—A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Sun, W., , Videen G. , , Kato S. , , Lin B. , , Lukashin C. , , and Hu Y. , 2011: A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data. J. Geophys. Res., 116, D22207, doi:10.1029/2011JD016422.

    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., , and Fu Q. , 2015: Automated retrieval of cloud and aerosol properties from the ARM Raman lidar. Part II: Extinction. J. Atmos. Oceanic Technol., doi:10.1175/JTECH-D-14-00178.1, in press.

    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., , Fu Q. , , and Comstock J. , 2011: Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites. J. Geophys. Res., 116, D21203, doi:10.1029/2011JD015970.

    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., , Fu Q. , , and Comstock J. M. , 2013a: Cloud effects on radiative heating rate profiles over Darwin using ARM and A-train radar/lidar observations. J. Geophys. Res. Atmos., 118, 56375654, doi:10.1002/jgrd.50476.

    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., , Fu Q. , , Comstock J. M. , , Sivaraman C. , , Vaughan M. A. , , Winker D. M. , , and Turner D. D. , 2013b: Macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidars. J. Geophys. Res. Atmos., 118, 92099220, doi:10.1002/jgrd.50691.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., , Ferrare R. A. , , Brasseur L. A. H. , , Feltz W. F. , , and Tooman T. P. , 2002: Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar. J. Atmos. Oceanic Technol., 19, 3750, doi:10.1175/1520-0426(2002)019<0037:AROWVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., and et al. , 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 20342050, doi:10.1175/2009JTECHA1228.1.

    • Search Google Scholar
    • Export Citation
  • Wandinger, U., , and Ansmann A. , 2002: Experimental determination of the lidar overlap profile with Raman lidar. Appl. Opt., 41, 511, doi:10.1364/AO.41.000511.

    • Search Google Scholar
    • Export Citation
  • Wang, P.-H., , Minnis P. , , McCormick M. P. , , Kent G. S. , , Yue G. K. , , Young D. F. , , and Skeens K. M. , 1998: A study of the vertical structure of tropical (20°S-20°N) optically thin clouds from SAGE II observations. Atmos. Res., 47–48, 599614, doi:10.1016/S0169-8095(97)00085-9.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , and Sassen K. , 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 16651682, doi:10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , and Sassen K. , 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part I: Algorithm description and comparison with in situ data. J. Appl. Meteor., 41, 218229, doi:10.1175/1520-0450(2002)041<0218:CCMPRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Welton, E. J., , and Campbell J. R. , 2002: Micropulse lidar signals: Uncertainty analysis. J. Atmos. Oceanic Technol., 19, 20892094, doi:10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., 2003a: Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Appl. Opt., 42, 25712592, doi:10.1364/AO.42.002571.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., 2003b: Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols. Appl. Opt., 42, 2593, doi:10.1364/AO.42.002593.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , and Vaughan M. , 1994: Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs. Atmos. Res., 34, 117133, doi:10.1016/0169-8095(94)90084-1.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , and Trepte C. R. , 1998: Laminar cirrus observed near the tropical tropopause by LITE. Geophys. Res. Lett., 25, 33513354, doi:10.1029/98GL01292.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , Vaughan M. A. , , Omar A. , , Hu Y. , , Powell K. A. , , Liu Z. , , Hunt W. H. , , and Young S. A. , 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and et al. , 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., , Pal S. , , Turner D. , , and Wagner E. , 2010: Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Bound.-Layer Meteor., 136, 253284, doi:10.1007/s10546-010-9494-z.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., , Fu Q. , , and Hu Y. , 2010: Radiative impacts of clouds in the tropical tropopause layer. J. Geophys. Res., 115, D00H12, doi:10.1029/2009JD012393.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 73 15
PDF Downloads 67 67 13

Automated Retrieval of Cloud and Aerosol Properties from the ARM Raman Lidar. Part I: Feature Detection

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 2 Pacific Northwest National Laboratory, Richland, Washington
  • | 3 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 4 Pacific Northwest National Laboratory, Richland, Washington
© Get Permissions
Restricted access

Abstract

A feature detection and extinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement Program’s (ARM) Raman lidar (RL) has been developed. Presented here is Part I of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitrogen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio—to identify features using range-dependent detection thresholds. FEX is designed to be context sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities provides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically thin features containing nonspherical particles, such as cirrus clouds. Improvements over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia, site. While the focus is on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

Corresponding author address: Tyler J. Thorsen, Department of Atmospheric Sciences, University of Washington, ATG 408, Box 351640, Seattle, WA 98195. E-mail: tylert@atmos.washington.edu

Abstract

A feature detection and extinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement Program’s (ARM) Raman lidar (RL) has been developed. Presented here is Part I of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitrogen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio—to identify features using range-dependent detection thresholds. FEX is designed to be context sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities provides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically thin features containing nonspherical particles, such as cirrus clouds. Improvements over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia, site. While the focus is on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

Corresponding author address: Tyler J. Thorsen, Department of Atmospheric Sciences, University of Washington, ATG 408, Box 351640, Seattle, WA 98195. E-mail: tylert@atmos.washington.edu
Save