• Ackerman, T. P., , and Stokes G. M. , 2003: The Atmospheric Radiation Measurement program. Phys. Today, 56 (1), 38, doi:10.1063/1.1554135.

  • Amiridis, V., , Balis D. S. , , Kazadzis S. , , Bais A. , , Giannakaki E. , , Papayannis A. , , and Zerefos C. , 2005: Four-year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET). J. Geophys. Res., 110, D21203, doi:10.1029/2005JD006190.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., 2003: Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia. J. Geophys. Res., 108, 8647, doi:10.1029/2002JD003247.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., , Riebesell M. , , and Weitkamp C. , 1990: Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett., 15, 746748, doi:10.1364/OL.15.000746.

    • Search Google Scholar
    • Export Citation
  • Balis, D., 2003: Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode. Atmos. Environ., 37, 45294538, doi:10.1016/S1352-2310(03)00581-8.

    • Search Google Scholar
    • Export Citation
  • Bankert, R. L., 1994: Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural network. J. Appl. Meteor., 33, 909918, doi:10.1175/1520-0450(1994)033<0909:CCOAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , Tovinkere V. , , Titlow J. , , and Welch R. M. , 1997: Automated cloud classification of global AVHRR data using a fuzzy logic approach. J. Appl. Meteor., 36, 15191540, doi:10.1175/1520-0450(1997)036<1519:ACCOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, doi:10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bevington, P., , and Robinson D. , 2002: Data Reduction and Error Analysis for the Physical Sciences. 3rd ed. McGraw-Hill, 336 pp.

  • Bringi, V. N., , and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., , Chandrasekar V. , , Hubbert J. , , Gorgucci E. , , Randeu W. L. , , and Schoenhuber M. , 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, doi:10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bucholtz, A., 1995: Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt., 34, 27652773, doi:10.1364/AO.34.002765.

    • Search Google Scholar
    • Export Citation
  • Burton, S. P., and et al. , 2012: Aerosol classification using airborne High Spectral Resolution Lidar measurements—Methodology and examples. Atmos. Meas. Tech., 5, 7398, doi:10.5194/amt-5-73-2012.

    • Search Google Scholar
    • Export Citation
  • Burton, S. P., , Vaughan M. A. , , Ferrare R. A. , , and Hostetler C. A. , 2014: Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data. Atmos. Meas. Tech., 7, 419436, doi:10.5194/amt-7-419-2014.

    • Search Google Scholar
    • Export Citation
  • Cairo, F., , Di Donfrancesco G. , , Adriani A. , , Pulvirenti L. , , and Fierli F. , 1999: Comparison of various linear depolarization parameters measured by lidar. Appl. Opt., 38, 44254432, doi:10.1364/AO.38.004425.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., , Hlavka D. L. , , Welton E. J. , , Flynn C. J. , , Turner D. D. , , Spinhirne J. D. , , Scott V. S. , , and Hwang I. H. , 2002: Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement Program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19, 431442, doi:10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carswell, A. I., , and Pal S. R. , 1980: Polarization anisotropy in lidar multiple scattering from clouds. Appl. Opt., 19, 41234126, doi:10.1364/AO.19.004123.

    • Search Google Scholar
    • Export Citation
  • Ceccaldi, M., , Delano J. , , Hogan R. J. , , Pounder N. L. , , Protat A. , , and Pelon J. , 2013: From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations. J. Geophys. Res. Atmos., 118, 79627981, doi:10.1002/jgrd.50579.

    • Search Google Scholar
    • Export Citation
  • Chen, W.-N., , Chiang C.-W. , , and Nee J.-B. , 2002: Lidar ratio and depolarization ratio for cirrus clouds. Appl. Opt., 41, 64706476, doi:10.1364/AO.41.006470.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., , and Sassen K. , 2001: Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements. J. Atmos. Oceanic Technol., 18, 16581673, doi:10.1175/1520-0426(2001)018<1658:ROCCRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cooney, J., , Orr J. , , and Tomasetti C. , 1969: Measurements separating the gaseous and aerosol components of laser atmospheric backscatter. Nature, 224, 10981099, doi:10.1038/2241098a0.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., , and Yang P. , 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16, 12411247, doi:10.1175/1520-0442(2003)16<1241:TDOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • De Tomasi, F., , Blanco A. , , and Perrone M. R. , 2003: Raman lidar monitoring of extinction and backscattering of African dust layers and dust characterization. Appl. Opt., 42, 16991709, doi:10.1364/AO.42.001699.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., and et al. , 2006: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619.

    • Search Google Scholar
    • Export Citation
  • Dupont, J.-C., , Haeffelin M. , , Morille Y. , , Comstock J. M. , , Flynn C. , , Long C. N. , , Sivaraman C. , , and Newson R. K. , 2011: Cloud properties derived from two lidars over the ARM SGP site. Geophys. Res. Lett., 38, L08814, doi:10.1029/2010GL046274.

    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 1998: Practical model for the calculation of multiply scattered lidar returns. Appl. Opt., 37, 24642472, doi:10.1364/AO.37.002464.

    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652653, doi:10.1364/AO.23.000652.

  • Fernald, F. G., , Herman B. M. , , and Reagan J. A. , 1972: Determination of aerosol height distributions by lidar. J. Appl. Meteor., 11, 482489, doi:10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R., and et al. , 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains. J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Franke, K., , Ansmann A. , , Müller D. , , Althausen D. , , Wagner F. , , and Scheele R. , 2001: One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar. Geophys. Res. Lett., 28, 45594562, doi:10.1029/2001GL013671.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 20582082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , Hu Y. , , and Yang Q. , 2007: Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations. Geophys. Res. Lett., 34, L14813, doi:10.1029/2007GL030099.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., , Luke E. P. , , and Kollias P. , 2012: Characterization of vertical velocity and drop size distribution parameters in widespread precipitation at ARM facilities. J. Appl. Meteor. Climatol., 51, 380391, doi:10.1175/JAMC-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., , Blair F. H. , , Bisson S. E. , , and Turner D. D. , 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 49794990, doi:10.1364/AO.37.004979.

    • Search Google Scholar
    • Export Citation
  • Grund, C. J., , and Eloranta E. W. , 1991: University of Wisconsin High Spectral Resolution Lidar. Opt. Eng., 30, 612, doi:10.1117/12.55766.

    • Search Google Scholar
    • Export Citation
  • Hair, J. W., and et al. , 2008: Airborne High Spectral Resolution Lidar for profiling aerosol optical properties. Appl. Opt., 47, 67346752, doi:10.1364/AO.47.006734.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2006: Fast approximate calculation of multiply scattered lidar returns. Appl. Opt., 45, 59845992, doi:10.1364/AO.45.005984.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2008: Fast lidar and radar multiple-scattering models. Part I: Small-angle scattering using the photon variance–covariance method. J. Atmos. Sci., 65, 36213635, doi:10.1175/2008JAS2642.1.

    • Search Google Scholar
    • Export Citation
  • Holben, B., and et al. , 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, doi:10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and et al. , 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, doi:10.1175/2009JTECHA1280.1.

    • Search Google Scholar
    • Export Citation
  • Jain, R., , Kasturi R. , , and Schunck B. G. , 1995: Machine Vision. McGraw-Hill, 549 pp.

  • Johnson, R. H., , Rickenbach T. M. , , Rutledge S. A. , , Ciesielski P. E. , , and Schubert W. H. , 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt., 20, 211220, doi:10.1364/AO.20.000211.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., , and Weinman J. A. , 1976: Monte Carlo analysis of multiply scattered lidar returns. J. Atmos. Sci., 33, 17721781, doi:10.1175/1520-0469(1976)033<1772:MCAOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , Sugimoto N. , , and Murayama T. , 2002: Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. Appl. Opt., 41, 27602767, doi:10.1364/AO.41.002760.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and et al. , 2009: The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Oceanic Technol., 26, 11981213, doi:10.1175/2009JTECHA1229.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and et al. , 2011: Effective lidar ratios of dense dust layers over North Africa derived from the CALIOP measurements. J. Quant. Spectrosc. Radiat. Transfer, 112, 204213, doi:10.1016/j.jqsrt.2010.05.006.

    • Search Google Scholar
    • Export Citation
  • Massie, S. T., , Gille J. , , Craig C. , , Khosravi R. , , Barnett J. , , Read W. , , and Winker D. , 2010: HIRDLS and CALIPSO observations of tropical cirrus. J. Geophys. Res., 115, D00H11, doi:10.1029/2009JD012100.

    • Search Google Scholar
    • Export Citation
  • Matthais, V., and et al. , 2004: Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. Appl. Opt., 43, 961976, doi:10.1364/AO.43.000961.

    • Search Google Scholar
    • Export Citation
  • Mattis, I., 2003: Unexpectedly high aerosol load in the free troposphere over central Europe in spring/summer 2003. Geophys. Res. Lett., 30, doi:10.1029/2003GL018442.

    • Search Google Scholar
    • Export Citation
  • Measures, R. M., 1984: Laser Remote Sensing: Fundamentals and Applications. John Wiley & Sons, 510 pp.

  • Melfi, S. H., 1972: Remote measurements of the atmosphere using Raman scattering. Appl. Opt., 11, 16051610, doi:10.1364/AO.11.001605.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., , Verlinde J. , , and Clothiaux E. E. , 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311, doi:10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, S. W., , and Emery W. J. , 1997: An automated neural network cloud classifier for use over land and ocean surfaces. J. Appl. Meteor., 36, 13461362, doi:10.1175/1520-0450(1997)036<1346:AANNCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M. P., , and Illingworth A. J. , 2003: Comparison of model-derived and radar-observed freezing-level heights: Implications for vertical reflectivity profile-correction schemes. Quart. J. Roy. Meteor. Soc., 129, 8395, doi:10.1256/qj.02.19.

    • Search Google Scholar
    • Export Citation
  • Müller, D., , Wagner F. , , Althausen D. , , Wandinger U. , , and Ansmann A. , 2000: Physical properties of the Indian aerosol plume derived from six-wavelength lidar observations on 25 March 1999 of the Indian Ocean Experiment. Geophys. Res. Lett., 27, 14031406, doi:10.1029/1999GL011217.

    • Search Google Scholar
    • Export Citation
  • Müller, D., , Ansmann A. , , Mattis I. , , Tesche M. , , Wandinger U. , , Althausen D. , , and Pisani G. , 2007: Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res., 112, D16202, doi:10.1029/2006JD008292.

    • Search Google Scholar
    • Export Citation
  • Murayama, T., and et al. 2003: An intercomparison of lidar-derived aerosol optical properties with airborne measurements near Tokyo during ACE-Asia. J. Geophys. Res., 108, 8651, doi:10.1029/2002JD003259.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., 2009: Raman lidar (RL) handbook. U.S. Department of Energy Tech. Rep. DOE/SC-ARM/TR-038, 25 pp. [Available online at https://www.arm.gov/publications/tech_reports/handbooks/rl_handbook.pdf.]

  • Newsom, R. K., , Turner D. D. , , Mielke B. , , Clayton M. , , Ferrare R. , , and Sivaraman C. , 2009: Simultaneous analog and photon counting detection for Raman lidar. Appl. Opt., 48, 39033914, doi:10.1364/AO.48.003903.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., , Turner D. D. , , and Goldsmith J. E. M. , 2013: Long-term evaluation of temperature profiles measured by an operational Raman lidar. J. Atmos. Oceanic Technol., 30, 16161634, doi:10.1175/JTECH-D-12-00138.1.

    • Search Google Scholar
    • Export Citation
  • Noel, V., , and Chepfer H. , 2010: A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). J. Geophys. Res., 115, D00H23, doi:10.1029/2009JD012365.

    • Search Google Scholar
    • Export Citation
  • Omar, A. H., , Won J.-G. , , Winker D. M. , , Yoon S.-C. , , Dubovik O. , , and McCormick M. P. , 2005: Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res., 110, D10S14, doi:10.1029/2004JD004874.

    • Search Google Scholar
    • Export Citation
  • Omar, A. H., and et al. , 2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 19942014, doi:10.1175/2009JTECHA1231.1.

    • Search Google Scholar
    • Export Citation
  • Pal, S. R., , and Carswell A. I. , 1976: Multiple scattering in atmospheric clouds: Lidar observations. Appl. Opt., 15, 19901995, doi:10.1364/AO.15.001990.

    • Search Google Scholar
    • Export Citation
  • Peppler, R. A., and et al. , 2000: ARM Southern Great Plains site observations of the smoke pall associated with the 1998 Central American fires. Bull. Amer. Meteor. Soc., 81, 25632591, doi:10.1175/1520-0477(2000)081<2563:ASGPSO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1973: Lidar and radioinetric observations of cirrus clouds. J. Atmos. Sci., 30, 11911204, doi:10.1175/1520-0469(1973)030<1191:LAROOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1978: Lidar backscatter from horizontal ice crystal plates. J. Appl. Meteor., 17, 482488, doi:10.1175/1520-0450(1978)017<0482:LBFHIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., , Wandinger U. , , Klein V. , , Mattis I. , , Hilber B. , , and Begbie R. , 2012: RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. Appl. Opt., 51, 81118131, doi:10.1364/AO.51.008111.

    • Search Google Scholar
    • Export Citation
  • Sakai, T., and et al. , 2002: Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan. Atmos. Environ., 36, 54795489, doi:10.1016/S1352-2310(02)00664-7.

    • Search Google Scholar
    • Export Citation
  • Sakai, T., , Nagai T. , , Nakazato M. , , Mano Y. , , and Matsumura T. , 2003: Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Appl. Opt., 42, 71037116, doi:10.1364/AO.42.007103.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 18481866, doi:10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and Comstock J. , 2001: A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part III: Radiative properties. J. Atmos. Sci., 58, 21132127, doi:10.1175/1520-0469(2001)058<2113:AMCCCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmid, B., and et al. , 2006: How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare? J. Geophys. Res., 111, D05S07, doi:10.1029/2005JD005837.

    • Search Google Scholar
    • Export Citation
  • Segelstein, D. J., 1981: The complex refractive index of water. M.S. thesis, Dept. of Physics, University of Missouri at Kansas City, 167 pp.

  • Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, doi:10.1029/2007GL031008.

  • Smirnov, A., , Holben B. , , Eck T. , , Dubovik O. , , and Slutsker I. , 2000: Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ., 73, 337349, doi:10.1016/S0034-4257(00)00109-7.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., , Hart W. D. , , and Hlavka D. L. , 1996: Cirrus infrared parameters and shortwave reflectance relations from observations. J. Atmos. Sci., 53, 14381458, doi:10.1175/1520-0469(1996)053<1438:CIPASR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 2011: Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteor. Climatol., 50, 22672269, doi:10.1175/JAMC-D-11-0143.1.

    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., , Fu Q. , , Comstock J. M. , , Sivaraman C. , , Vaughan M. A. , , Winker D. M. , , and Turner D. D. , 2013: Macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidars. J. Geophys. Res., 118, 92099220, doi:10.1002/jgrd.50691.

    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., , Fu Q. , , Newsom R. K. , , Turner D. D. , , and Comstock J. M. , 2015: Automated retrieval of cloud and aerosol properties from the ARM Raman lidar. Part I: Feature detection. J. Atmos. Oceanic Technol., doi:10.1175/JTECH-D-14-00150.1, in press.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., , Bringi V. N. , , and May P. T. , 2010: CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol., 27, 932942, doi:10.1175/2010JTECHA1349.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., , Ferrare R. A. , , Brasseur L. A. H. , , Feltz W. F. , , and Tooman T. P. , 2002: Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar. J. Atmos. Oceanic Technol., 19, 3750, doi:10.1175/1520-0426(2002)019<0037:AROWVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wandinger, U., 1998: Multiple-scattering influence on extinction-and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars. Appl. Opt., 37, 417427, doi:10.1364/AO.37.000417.

    • Search Google Scholar
    • Export Citation
  • Wang, P.-H., , Minnis P. , , McCormick M. P. , , Kent G. S. , , Yue G. K. , , Young D. F. , , and Skeens K. M. , 1998: A study of the vertical structure of tropical (20°S-20°N) optically thin clouds from SAGE II observations. Atmos. Res., 47–48, 599614, doi:10.1016/S0169-8095(97)00085-9.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , and Sassen K. , 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part I: Algorithm description and comparison with in situ data. J. Appl. Meteor., 41, 218229, doi:10.1175/1520-0450(2002)041<0218:CCMPRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , and Trepte C. R. , 1998: Laminar cirrus observed near the tropical tropopause by LITE. Geophys. Res. Lett., 25, 33513354, doi:10.1029/98GL01292.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and et al. , 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., 1980: Improved Mie scattering algorithms. Appl. Opt., 19, 15051509, doi:10.1364/AO.19.001505.

  • Young, S. A., 1995: Analysis of lidar backscatter profiles in optically thin clouds. Appl. Opt., 34, 70197031, doi:10.1364/AO.34.007019.

    • Search Google Scholar
    • Export Citation
  • Young, S. A., , and Vaughan M. A. , 2009: The retrieval of profiles of particulate extinction from Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Oceanic Technol., 26, 11051119, doi:10.1175/2008JTECHA1221.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., and et al. , 2012: Toward understanding of differences in current cloud retrievals of ARM ground-based measurements. J. Geophys. Res., 117, D10206, doi:10.1029/2011JD016792.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., , Yang P. , , Dessler A. E. , , Hu Y. , , and Baum B. A. , 2012: Study of horizontally oriented ice crystals with CALIPSO observations and comparison with Monte Carlo radiative transfer simulations. J. Appl. Meteor. Climatol., 51, 14261439, doi:10.1175/JAMC-D-11-0265.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 128 19
PDF Downloads 117 117 14

Automated Retrieval of Cloud and Aerosol Properties from the ARM Raman Lidar. Part II: Extinction

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington, and College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
© Get Permissions
Restricted access

Abstract

A feature detection and extinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement Program’s (ARM) Raman lidar (RL) has been developed. Presented here is Part II of the FEX algorithm: the retrieval of cloud and aerosol extinction profiles. The directly retrieved extinction profiles using the Raman method are supplemented by other retrieval methods developed for elastic backscatter lidars. Portions of features where the extinction-to-backscatter ratios (i.e., lidar ratios) can be obtained are used to infer the lidar ratios for the regions where no such estimate can be made. When neither directly retrieved nor an inferred value can be determined, a climatological lidar ratio is used. This best-estimate approach results in the need to use climatological lidar ratios for less than about 5% of features, except for thin cirrus at the ARM tropical western Pacific Darwin site, where above 12 km, about 20% of clouds use a climatological lidar ratio. A classification of feature type is made, guided by the atmosphere’s thermodynamic state and the feature’s scattering properties: lidar ratio, backscatter, and depolarization. The contribution of multiple scattering is explicitly considered for each of the ARM RL channels. A comparison between aerosol optical depth from FEX and that from collocated sun photometers over multiple years at two ARM sites shows an agreement (in terms of bias error) of about −0.3% to −4.3% (relative to the sun photometer).

Corresponding author address: Tyler J. Thorsen, Department of Atmospheric Sciences, University of Washington, ATG 408, Box 351640, Seattle, WA 98195. E-mail: tylert@atmos.washington.edu

Abstract

A feature detection and extinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement Program’s (ARM) Raman lidar (RL) has been developed. Presented here is Part II of the FEX algorithm: the retrieval of cloud and aerosol extinction profiles. The directly retrieved extinction profiles using the Raman method are supplemented by other retrieval methods developed for elastic backscatter lidars. Portions of features where the extinction-to-backscatter ratios (i.e., lidar ratios) can be obtained are used to infer the lidar ratios for the regions where no such estimate can be made. When neither directly retrieved nor an inferred value can be determined, a climatological lidar ratio is used. This best-estimate approach results in the need to use climatological lidar ratios for less than about 5% of features, except for thin cirrus at the ARM tropical western Pacific Darwin site, where above 12 km, about 20% of clouds use a climatological lidar ratio. A classification of feature type is made, guided by the atmosphere’s thermodynamic state and the feature’s scattering properties: lidar ratio, backscatter, and depolarization. The contribution of multiple scattering is explicitly considered for each of the ARM RL channels. A comparison between aerosol optical depth from FEX and that from collocated sun photometers over multiple years at two ARM sites shows an agreement (in terms of bias error) of about −0.3% to −4.3% (relative to the sun photometer).

Corresponding author address: Tyler J. Thorsen, Department of Atmospheric Sciences, University of Washington, ATG 408, Box 351640, Seattle, WA 98195. E-mail: tylert@atmos.washington.edu
Save