• Abramowitz, M., , and Stegun I. A. , Eds., 1972: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55, Government Printing Office, 1046 pp.

  • Bolen, S. M., , and Chandrasekar V. , 2000: Cross validation of space-based and ground-based radar observations. J. Appl. Meteor., 39, 20712079, doi:10.1175/1520-0450(2001)040<2071:QCVOSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and et al. , 2014: The Global Precipitation Measurement (GPM) mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , Kozu T. , , Meneghini R. , , Awaka J. , , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , Kozu T. , , Kwiatkowski J. , , Meneghini R. , , Awaka J. , , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., , and Iguchi T. , 1999: Nonuniform beamfilling correction for spaceborne radar rainfall measurement: Implications from TOGA COARE radar data analysis. J. Atmos. Oceanic Technol., 16, 17221735, doi:10.1175/1520-0426(1999)016<1722:NBCFSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., , and Kozu T. , 1990: Spaceborne Weather Radar. Artech House, 199 pp.

  • Meneghini, R., , and Liao L. , 2013: Modified Hitschfeld–Bordan equations for attenuation-corrected radar rain reflectivity: Application to nonuniform beamfilling at off-nadir incidence. J. Atmos. Oceanic Technol., 30, 11491160, doi:10.1175/JTECH-D-12-00192.1.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., , Eckerman J. , , and Atlas D. , 1983: Determination of rain rate from a space-borne radar using measurements of total attenuation. IEEE Trans. Geosci. Remote Sens., GE-21, 3443, doi:10.1109/TGRS.1983.350528.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., , Iguchi T. , , Kozu T. , , Liao L. , , Okamoto K. , , Jones J. A. , , and Kwiatkowski J. , 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39, 20532070, doi:10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., , Liao L. , , Tanelli S. , , and Durden S. L. , 2012: Assessment of the performance of a dual-frequency surface reference technique over ocean. IEEE Trans. Geosci. Remote Sens., 50, 29682977, doi:10.1109/TGRS.2011.2180727.

    • Search Google Scholar
    • Export Citation
  • Nakamura, K., 1991: Biases of rain retrieval algorithms for spaceborne radar caused by nonuniformity of rain. J. Atmos. Oceanic Technol., 8, 363373, doi:10.1175/1520-0426(1991)008<0363:BORRAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., , Nakagawa K. , , and Iguchi T. , 2012: Empirical test of theoretically based correction for path integrated attenuation in simulated spaceborne precipitation radar observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 930935, doi:10.1109/JSTARS.2012.2194695.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., , Nakagawa K. , , and Iguchi T. , 2013: Reduction of nonuniform beam filling effects by vertical decorrelation: Theory and simulations. J. Meteor. Soc. Japan, 91, 539543, doi:10.2151/jmsj.2013-408.

    • Search Google Scholar
    • Export Citation
  • Takahashi, N., , Hanado H. , , and Iguchi T. , 2006: Estimation of path-integrated attenuation and its nonuniformity from TRMM/PR range profile data. IEEE Trans. Geosci. Remote Sens., 44, 32763283, doi:10.1109/TGRS.2006.876295.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 1
PDF Downloads 16 16 1

Reduction of Nonuniform Beamfilling Effects by Multiple Constraints: A Simulation Study

View More View Less
  • 1 Science Systems and Applications, Inc., Lanham, and NASA GSFC, Greenbelt, Maryland
  • | 2 NASA GSFC, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

A spaceborne precipitation radar samples the vertical structure of precipitating hydrometeors from the top down. The viewing geometry and operating frequency result in certain limitations and opportunities. Among the limitations is attenuation of the radar signal that can cause the measured radar reflectivity factor to be substantially less than the desired quantity, the true radar reflectivity factor. Another error source is the spatial variability in precipitation rates that occurs at scales smaller than the sensor field of view (FOV), giving rise to the nonuniform beamfilling (NUBF) effect. The opportunities arise when the radar return from the surface can be used to obtain constraints on the path-integrated attenuation (PIA) for use in hybrid attenuation correction algorithms. The surface return can also provide some information on the degree of NUBF at off-nadir viewing angles. In this paper ground-based radar data are used to simulate spaceborne radar data at nadir and off-nadir viewing angles at Ku band and Ka band and to test attenuation correction algorithms in the presence of nonuniform beamfilling. The cross-FOV gradient in PIA is found to be an important characteristic for describing the performance of attenuation correction algorithms.

Corresponding author address: David Short, SSAI, NASA GSFC, Code 612, Greenbelt Road, Greenbelt, MD 20771. E-mail: david.a.short@nasa.gov

Abstract

A spaceborne precipitation radar samples the vertical structure of precipitating hydrometeors from the top down. The viewing geometry and operating frequency result in certain limitations and opportunities. Among the limitations is attenuation of the radar signal that can cause the measured radar reflectivity factor to be substantially less than the desired quantity, the true radar reflectivity factor. Another error source is the spatial variability in precipitation rates that occurs at scales smaller than the sensor field of view (FOV), giving rise to the nonuniform beamfilling (NUBF) effect. The opportunities arise when the radar return from the surface can be used to obtain constraints on the path-integrated attenuation (PIA) for use in hybrid attenuation correction algorithms. The surface return can also provide some information on the degree of NUBF at off-nadir viewing angles. In this paper ground-based radar data are used to simulate spaceborne radar data at nadir and off-nadir viewing angles at Ku band and Ka band and to test attenuation correction algorithms in the presence of nonuniform beamfilling. The cross-FOV gradient in PIA is found to be an important characteristic for describing the performance of attenuation correction algorithms.

Corresponding author address: David Short, SSAI, NASA GSFC, Code 612, Greenbelt Road, Greenbelt, MD 20771. E-mail: david.a.short@nasa.gov
Save