• Andersen, L. N., 2001: The new Simrad EK60 scientific echo sounder system. J. Acoust. Soc. Amer., 109, 2336, doi:10.1121/1.4744207.

  • Barrett, N., , Seiler J. , , Anderson T. , , Williams S. , , Nichol S. , , and Hill S. , 2010: Using an autonomous underwater vehicle to inform management of biodiversity in shelf waters. OCEANS 2010 IEEE—Sydney, IEEE, 146–151.

  • Baumgartner, M. F., , and Fratantoni D. M. , 2008: Diel periodicity in both sei whale vocalization rates and the vertical migration of their copepod prey observed from ocean gliders. Limnol. Oceanogr., 53, 21972209, doi:10.4319/lo.2008.53.5_part_2.2197.

    • Search Google Scholar
    • Export Citation
  • Benoit-Bird, K. J., , Kuletz K. , , Heppell S. , , Jones N. , , and Hoover B. , 2011: Active acoustic examination of the diving behavior of murres foraging on patchy prey. Mar. Ecol. Prog. Ser., 443, 217235, doi:10.3354/meps09408.

    • Search Google Scholar
    • Export Citation
  • Brierley, A. S., , and Fernandes P. G. , 2001: Diving depths of northern gannets: Acoustic observations of Sula bassana from an autonomous underwater vehicle. Auk, 118, 529534, doi:10.1642/0004-8038(2001)118[0529:DDONGA]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brierley, A. S., and et al. , 2002: Antarctic krill under sea ice: Elevated abundance in a narrow band just south of ice edge. Science, 295, 18901892, doi:10.1126/science.1068574.

    • Search Google Scholar
    • Export Citation
  • Brierley, A. S., and et al. , 2003: An investigation of avoidance by Antarctic krill of RRS James Clark Ross using the Autosub-2 autonomous underwater vehicle. Fish. Res., 60, 569576, doi:10.1016/S0165-7836(02)00144-3.

    • Search Google Scholar
    • Export Citation
  • Dalen, J., , and Lovik A. , 1981: The influence of wind-induced bubbles on echo integration surveys. J. Acoust. Soc. Amer., 69, 16531659, doi:10.1121/1.385943.

    • Search Google Scholar
    • Export Citation
  • Deutschman, D., , Bradshaw G. A. , , Childress W. M. , , Daly K. , , Grunbaum D. , , Pascual M. , , Schumaker N. , , and Wu J. , 1993: Mechanisms of patch formation. Patch Dynamics, S. A. Levin, T. M. Powell, and J. H. Steele, Eds., Springer Verlag, 184–209.

    • Search Google Scholar
    • Export Citation
  • Dickey, T. D., , Itsweire E. C. , , Moline M. , , and Perry M. J. , 2008: Introduction to the Limnology and Oceanography special issue on Autonomous and Lagrangian Platforms and Sensors (ALPS). Limnol. Oceanogr., 53, 20572061, doi:10.4319/lo.2008.53.5_part_2.2057.

    • Search Google Scholar
    • Export Citation
  • Fernandes, P. G., , Brierley A. S. , , Simmonds E. J. , , Millard N. W. , , McPhail S. D. , , Armstrong F. , , Stevenson P. , , and Squires M. , 2000: Oceanography: Fish do not avoid survey vessels. Nature, 404, 3536, doi:10.1038/35003648.

    • Search Google Scholar
    • Export Citation
  • Fernandes, P. G., , Stevenson P. , , Brierley A. S. , , Armstrong F. , , and Simmonds E. J. , 2003: Autonomous underwater vehicles: Future platforms for fisheries acoustics. ICES J. Mar. Sci., 60, 684691, doi:10.1016/S1054-3139(03)00038-9.

    • Search Google Scholar
    • Export Citation
  • Foote, K. G., , Knudsen H. P. , , Vestnes G. , , MacLennan D. N. , , and Simmonds E. J. , 1987: Calibration of acoustic instruments for fish density estimation: A practical guide. ICES Cooperative Research Rep. 144, 71 pp.

  • George, R. A., , Gee L. , , Hill A. W. , , Thomson J. A. , , and Jeanjean P. , 2002: High-resolution AUV surveys of the eastern Sigsbee Escarpment. Proc. Offshore Technology Conf., Houston, TX, Society of Petroleum Engineers, OTC 14139. [Available online at http://www.cctechnol.com/Files/Articles/171_0.pdf.]

  • Griffiths, G., and et al. , 2001: Standard and special: Sensors used during the Autosub Science Missions programme. Proc. Symp. on Sensors and Autonomous Underwater Vehicles, Miami Beach, FL, Autonomous Undersea Systems Institute, 16 pp.

  • Holliday, D. V., 1977: Extracting biophysical information from the acoustic signals of marine organisms. Oceanic Sound Scattering Prediction, N. R. Anderson, and B. J. Zahuranec, Eds., Plenum, 619–624.

  • Kloser, R., 1996: Improved precision of acoustic surveys of benthopelagic fish by means of a deep-towed transducer. ICES J. Mar. Sci., 53, 407413, doi:10.1006/jmsc.1996.0057.

    • Search Google Scholar
    • Export Citation
  • MacLennan, D. N., , and Holliday D. V. , 1996: Fisheries and plankton acoustics: Past, present, and future. ICES J. Mar. Sci., 53, 513516, doi:10.1006/jmsc.1996.0074.

    • Search Google Scholar
    • Export Citation
  • McClatchie, S., , Thorne R. E. , , Grimes P. , , and Hanchet S. , 2000: Ground truth and target identification for fisheries acoustics. Fish. Res., 47, 173191, doi:10.1016/S0165-7836(00)00168-5.

    • Search Google Scholar
    • Export Citation
  • Moline, M. A., and et al. , 2005: Remote environmental monitoring units: An autonomous vehicle for characterizing coastal environments. J. Atmos. Oceanic Technol., 22, 17971808, doi:10.1175/JTECH1809.1.

    • Search Google Scholar
    • Export Citation
  • Moline, M. A., , Benoit-Bird K. J. , , Robbins I. C. , , Schroth-Miller M. , , Waluk C. M. , , and Zelenke B. , 2010: Integrated measurements of acoustical and optical thin layers II: Horizontal length scales. Cont. Shelf Res., 30, 2938, doi:10.1016/j.csr.2009.08.004.

    • Search Google Scholar
    • Export Citation
  • Munk, W., , and Baggeroer A. , 1994: The Heard Island papers: A contribution to global acoustics. J. Acoust. Soc. Amer., 96, 23272329, doi:10.1121/1.411316.

    • Search Google Scholar
    • Export Citation
  • Niu, H., , Adams S. , , Lee K. , , Husain T. , , and Bose N. , 2009: Applications of autonomous underwater vehicles in offshore petroleum industry environmental effects monitoring. J. Can. Pet. Technol., 48, 1216, doi:10.2118/09-05-12-GE.

    • Search Google Scholar
    • Export Citation
  • Oliver, M. J., , Breece M. W. , , Fox D. A. , , Haulsee D. E. , , Kohut J. T. , , Manderson J. , , and Savoy T. , 2013: Shrinking the haystack: Using an AUV in an integrated ocean observatory to map Atlantic sturgeon in the coastal ocean. Fisheries, 38, 210216, doi:10.1080/03632415.2013.782861.

    • Search Google Scholar
    • Export Citation
  • Panish, R., , and Taylor M. , 2011: Achieving high navigation accuracy using inertial navigation systems in autonomous underwater vehicles. Proc. IEEE Oceans 2011 Meeting, Santander, Spain, IEEE, 7 pp., doi:10.1109/Oceans-Spain.2011.6003517.

    • Search Google Scholar
    • Export Citation
  • Patel, R., , Handegard N. O. , , and Godo O. R. , 2004: Behaviour of herring (Clupea harengus L.) towards an approaching autonomous underwater vehicle. ICES J. Mar. Sci., 61, 10441049, doi:10.1016/j.icesjms.2004.07.002.

    • Search Google Scholar
    • Export Citation
  • Robbins, I. C., , Kirkpatrick G. J. , , Blackwell S. M. , , Hillier J. , , Knight C. A. , , and Moline M. A. , 2006: Improved monitoring of HABs using autonomous underwater vehicles (AUV). Harmful Algae, 5, 749761, doi:10.1016/j.hal.2006.03.005.

    • Search Google Scholar
    • Export Citation
  • Scalabrin, C., , Marfia C. , , and Boucher J. , 2009: How much fish is hidden in the surface and bottom acoustic blind zones? ICES J. Mar. Sci., 66, 13551363, doi:10.1093/icesjms/fsp136.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., , and Petitt R. , 2006: A fast response, stable CTD for gliders and AUVs. Proc. Oceans 2006, Boston, MA, IEEE, 5 pp., doi:10.1109/OCEANS.2006.306907.

  • Stanton, T., 1982: Effects of transducer motion on echo-integration techniques. J. Acoust. Soc. Amer., 72, 947949, doi:10.1121/1.388175.

    • Search Google Scholar
    • Export Citation
  • Stokey, R. P., , Freitag L. E. , , and Grund M. D. , 2005a: A compact control language for AUV acoustic communication. Oceans 2005—Europe, Vol. 2, IEEE, 11131137.

  • Stokey, R. P., and et al. , 2005b: Development of the REMUS 600 autonomous underwater vehicle. Proceedings of the Oceans 2005 MTS/IEEE Conference and Exhibition, Vol. 2, IEEE, 13011304.

  • Yuh, J., , Marani G. , , and Blidberg D. R. , 2011: Applications of marine robotic vehicles. Intell. Serv. Rob., 4, 221231, doi:10.1007/s11370-011-0096-5.

    • Search Google Scholar
    • Export Citation
  • Zawada, D. G., , Thompson P. R. , , and Butcher J. , 2008: A new towed platform for the unobtrusive surveying of benthic habitats and organisms. Rev. Biol. Trop., 56 (Suppl.), 5163, doi:10.15517/rbt.v56i0.5577.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 166 24
PDF Downloads 121 121 25

Integration of Scientific Echo Sounders with an Adaptable Autonomous Vehicle to Extend Our Understanding of Animals from the Surface to the Bathypelagic

View More View Less
  • 1 School of Marine Science and Policy, University of Delaware, Lewes, Delaware
  • | 2 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 3 Center for Coastal Marine Sciences, California State Polytechnic University, San Luis Obispo, California
© Get Permissions
Restricted access

Abstract

Acoustic echo sounders designed to map and discriminate organisms in the water column have primarily been deployed on ships. Because of acoustic attenuation of higher frequencies used to detect and discriminate micronekton and nekton, this has effectively restricted the range of this information to the upper water column. In an effort to overcome these range limitations by reducing the distance between the transducer and the targets of interest, dual-frequency (38 and 120 kHz) split-beam echo sounders were integrated into a Remote Environmental Monitoring Units (REMUS) 600 autonomous underwater vehicle (AUV), effectively doubling the range of quantitative acoustic data into the mesopelagic zone (600–1200 m). Data from the first set of missions in a range of conditions revealed that the AUV provided a stable platform for the echo sounders and improved vertical and horizontal positional accuracy over echo sounders towed by ships. In comparison to hull-mounted echo sounders, elimination of ship noise and surface bubbles provided a 17- and 19-dBW decrease in the noise floor for the 38- and 120-kHz echo sounders, respectively, effectively increasing the sampling range by 30%–40%. The extended depth range also increased the resolution of the acoustic horizontal footprint from 37–40 to 0.6–3.7 m, enabling discrimination of individual targets at depth. Also developed here is novel onboard echo sounder data processing and autonomy to allow sampling not feasible in a surface ship or towed configuration. Taken together, these data demonstrate an effective new tool for examining the biology of animals in the mesopelagic zone (600–1200 m) in ways previously only possible in the upper ocean.

Denotes Open Access content.

Corresponding author address: Mark A. Moline, School of Marine Science and Policy, University of Delaware, 700 Pilottown Rd., Lewes, DE 19958. E-mail: mmoline@udel.edu

Abstract

Acoustic echo sounders designed to map and discriminate organisms in the water column have primarily been deployed on ships. Because of acoustic attenuation of higher frequencies used to detect and discriminate micronekton and nekton, this has effectively restricted the range of this information to the upper water column. In an effort to overcome these range limitations by reducing the distance between the transducer and the targets of interest, dual-frequency (38 and 120 kHz) split-beam echo sounders were integrated into a Remote Environmental Monitoring Units (REMUS) 600 autonomous underwater vehicle (AUV), effectively doubling the range of quantitative acoustic data into the mesopelagic zone (600–1200 m). Data from the first set of missions in a range of conditions revealed that the AUV provided a stable platform for the echo sounders and improved vertical and horizontal positional accuracy over echo sounders towed by ships. In comparison to hull-mounted echo sounders, elimination of ship noise and surface bubbles provided a 17- and 19-dBW decrease in the noise floor for the 38- and 120-kHz echo sounders, respectively, effectively increasing the sampling range by 30%–40%. The extended depth range also increased the resolution of the acoustic horizontal footprint from 37–40 to 0.6–3.7 m, enabling discrimination of individual targets at depth. Also developed here is novel onboard echo sounder data processing and autonomy to allow sampling not feasible in a surface ship or towed configuration. Taken together, these data demonstrate an effective new tool for examining the biology of animals in the mesopelagic zone (600–1200 m) in ways previously only possible in the upper ocean.

Denotes Open Access content.

Corresponding author address: Mark A. Moline, School of Marine Science and Policy, University of Delaware, 700 Pilottown Rd., Lewes, DE 19958. E-mail: mmoline@udel.edu
Save