• ASTM International, 2010: Standard test method for hail impact resistance of aerospace transparent enclosures. Rep. ASTM F320-10, 8 pp., doi:10.1520/F0320-10.

  • Barge, B. L., , and Isaac G. A. , 1973: The shape of Alberta hailstones. J. Rech. Atmos., 7, 1120.

  • Bilhelm, E. G., , and Relf E. F. , 1937: The dynamics of large hailstones. Quart. J. Roy. Meteor. Soc., 63, 149162, doi:10.1002/qj.49706326904.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., , and Leighton J. W. , 2012: Creating high-resolution hail datasets using social media and post-storm ground surveys. Electron. J. Oper. Meteor., 13, 3245. [Available online at http://www.nwas.org/ej/2012/2012EJ3abstract.php.]

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1963: The growth of large hail within a steady updraught. Quart. J. Roy. Meteor. Soc., 89, 490506, doi:10.1002/qj.49708938206.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1977: The structure and mechanisms of hailstorms. Hail: A Review of Hail Science and Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 1–43.

  • Browning, K. A., , and Foote G. B. , 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499533, doi:10.1002/qj.49710243303.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and Morrison H. , 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., , Changnon D. , , and Hilberg S. D. , 2009: Hailstorms across the nation: An atlas about hail and its damages. Illinois State Water Survey Contract Rep. 2009-12, 92 pp.

  • Crenshaw, V. A., , and Koontz J. D. , 2001: Simulated hail damage and impact resistance test procedures: For roof coverings and membranes. Interface, 4–10.

  • Currier, J. H., , and Schulson E. M. , 1982: The tensile strength of ice as a function of grain size. Acta Metall., 30, 15111514, doi:10.1016/0001-6160(82)90171-7.

    • Search Google Scholar
    • Export Citation
  • Dennis, A. S., , Smith P. L. Jr., , Peterson G. A. P. , , and McNeil R. D. , 1971: Hailstone size distributions and equivalent radar reflectivity factors computed from hailstone momentum records. J. Appl. Meteor., 10, 7985, doi:10.1175/1520-0450(1971)010<0079:HSDAER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dennis, E. J., , and Kumjian M. R. , 2014: The impact of hodograph shape on hail production in idealized supercell thunderstorms. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., P20. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper255162.html.]

  • Druez, J., , Nguyen D. D. , , and Lavoie Y. , 1986: Properties of atmospheric ice. Cold Reg. Sci. Technol., 13, 6774, doi:10.1016/0165-232X(86)90008-X.

    • Search Google Scholar
    • Export Citation
  • FM Approvals, 2005: Specification test standard for impact resistance testing of rigid roofing materials by impacting with freezer ice balls. Class 4473, 7 pp.

  • Foote, G. B., 1984: A study of hail growth utilizing observed storm conditions. J. Climate Appl. Meteor., 23, 84101, doi:10.1175/1520-0450(1984)023<0084:ASOHGU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., , and Knight C. A. , 1977: Hail: A Review of Hail Science and Hail Suppression. Meteor. Monogr., No. 38, Amer. Meteor. Soc., 277 pp.

  • Gilmore, M. S., , Straka J. M. , , and Rasmussen E. N. , 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916, doi:10.1175/1520-0493(2004)132<1897:PAESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkes, I., , and Mellor M. , 1972: Deformation and fracture of ice under uniaxial stress. J. Glaciol., 11, 103131.

  • Haynes, F. D., 1978: Effect of temperature on the strength of snow-ice. Cold Regions Research and Engineering Laboratory, Corps of Engineers CRREL Rep. 78-27, 19 pp.

  • Heymsfield, A. J., 1978: The characteristics of graupel particles in northeastern Colorado cumulus congestus clouds. J. Atmos. Sci., 35, 284295, doi:10.1175/1520-0469(1978)035<0284:TCOGPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , Giammanco I. M. , , and Wright R. , 2014: Terminal velocities and kinetic energies of natural hailstones. Geophys. Res. Lett., 41, 86668672, doi:10.1002/2014GL062324.

    • Search Google Scholar
    • Export Citation
  • Jones, S. J., 1997: High strain-rate compression tests on ice. J. Phys. Chem., 101, 60996101, doi:10.1021/jp963162j.

  • Kim, H., , and Kedward K. T. , 2000: Modeling hail ice impacts and predicting impact damage initiation in composite structures. AIAA J., 38, 12781288, doi:10.2514/2.1099.

    • Search Google Scholar
    • Export Citation
  • Kim, H., , and Keune J. N. , 2007: Compressive strength of ice at impact strain rates. J. Mater. Sci., 42, 28022806, doi:10.1007/s10853-006-1376-x.

    • Search Google Scholar
    • Export Citation
  • King, W. D., , and Fletcher N. H. , 1976: Thermal shock as an ice multiplication mechanism. Part I. Theory. J. Atmos. Sci., 33, 8596, doi:10.1175/1520-0469(1976)033<0085:TSAAIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., , and Knight N. C. , 1968: The final freezing of spongy ice: Hailstone collection techniques and interpretations of structures. J. Appl. Meteor., 7, 875881, doi:10.1175/1520-0450(1968)007<0875:TFFOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., , and Knight N. C. , 1973: Quenched, spongy hail. J. Atmos. Sci., 30, 16651671, doi:10.1175/1520-0469(1973)030<1665:QSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., , and Knight N. C. , 2001: Hailstorms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 223–254.

  • Knight, C. A., , Schlatter P. T. , , and Schlatter T. W. , 2008: An unusual hailstorm on 24 June 2006 in Boulder, Colorado. Part II: Low-density growth of hail. Mon. Wea. Rev., 136, 28332848, doi:10.1175/2008MWR2338.1.

    • Search Google Scholar
    • Export Citation
  • Knight, N. C., 1986: Hailstone shape factor and its relationship to radar interpretation of hail. J. Climate Appl. Meteor., 25, 19561958, doi:10.1175/1520-0450(1986)025<1956:HSFAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, N. C., , and Heymsfield A. J. , 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 15101516, doi:10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , Khain A. P. , , Benmoshe N. , , Ilotoviz E. , , Ryzhkov A. V. , , and Phillips V. T. J. , 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, doi:10.1175/JAMC-D-13-0354.1.

    • Search Google Scholar
    • Export Citation
  • Laurie, J. A. P., 1960: Hail and its effects on buildings. Council for Scientific and Industrial Research Rep. 176, 12 pp.

  • Lee, R. W., , and Schulson E. M. , 1988: The strength and ductility of ice under tension. J. Offshore Mech. Arctic Eng., 110, 187191, doi:10.1115/1.3257049.

    • Search Google Scholar
    • Export Citation
  • Lozowski, E. P., , Brett M. , , Tait N. , , and Smy T. , 1991: Simulating giant hailstone structure with a ballistic aggregation model. Quart. J. Roy. Meteor. Soc., 117B, 427431, doi:10.1002/qj.49711749811.

    • Search Google Scholar
    • Export Citation
  • Macklin, W. C., 1962: The density and structure of ice formed by accretion. Quart. J. Roy. Meteor. Soc., 88, 3050, doi:10.1002/qj.49708837504.

    • Search Google Scholar
    • Export Citation
  • Macklin, W. C., 1977: The characteristics of natural hailstones and their suppression. Hail: A Review of Hail Science and Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 65–88.

  • Matson, R. J., , and Huggins A. W. , 1980: The direct measurement of the size, shapes, and kinematics of falling hailstones. J. Atmos. Sci., 37, 11071125, doi:10.1175/1520-0469(1980)037<1107:TDMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, M., , and Cole D. M. , 1982: Deformation and failure of ice under constant stress or constant strain-rate. Cold Reg. Sci. Technol., 5, 201219, doi:10.1016/0165-232X(82)90015-5.

    • Search Google Scholar
    • Export Citation
  • Michel, B., 1978: Ice Mechanics. Presses de l’Université Laval, 499 pp.

  • Morrison, H., , Morales A. , , and Villanueva-Birriel C. , 2015: Concurrent sensitivities of an idealized deep convective storm to parameterization of microphysics, horizontal grid resolution, and environmental static stability. Mon. Wea. Rev., 143, 20822104, doi:10.1175/MWR-D-14-00271.1.

    • Search Google Scholar
    • Export Citation
  • Roeder, P., Ed., 2012: Severe weather in North America: Perils, risks, and insurance. Knowledge Series: Natural Hazards, Munich RE Rep., 274 pp.

  • Schulson, E. M., , and Duval P. , 2009: Creep and Fracture of Ice. Cambridge University Press, 416 pp.

  • Schulson, E. M., , Lim P. N. , , and Lee R. W. , 1984: A brittle to ductile transition in ice under tension. Philos. Mag., 49A, 353363, doi:10.1080/01418618408233279.

    • Search Google Scholar
    • Export Citation
  • Shazly, M., , Prakash V. , , and Lerch B. A. , 2009: High strain-rate behavior of ice under uniaxial compression. Int. J. Solids Struct., 46, 14991515, doi:10.1016/j.ijsolstr.2008.11.020.

    • Search Google Scholar
    • Export Citation
  • Silva, V. Q., 2011: Design of protective covers against natural hazards. M.S. thesis, Dept. of Polymer and Fiber Engineering, Auburn University, 115 pp.

  • Smith, B. T., , Thompson R. L. , , Grams J. S. , , and Broyles C. , 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, doi:10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Smith, W. F., , and Hashemi J. , 2006: Foundations of Materials Science and Engineering. 4th ed. McGraw-Hill, 1032 pp.

  • Swift, J. M., 2013: Simulated hail ice mechanical properties and failure mechanism at quasi-static strain rates. M.S. thesis, Dept. of Aeronautics and Astronautics, University of Washington, 71 pp.

  • Underwriters Laboratory, 2012: Standard for safety: Impact resistance of prepared roof covering materials. 2nd ed. ANSI/UL 2218-2012, 12 pp.

  • van den Heever, S. C., , and Cotton W. R. , 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609, doi:10.1175/1520-0469(2004)061<1596:TIOHSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C., , Ray P. S. , , and Knight N. C. , 1983: Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 17681791, doi:10.1175/1520-0469(1983)040<1768:HGIAOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 164 32
PDF Downloads 156 156 35

Evaluating the Hardness Characteristics of Hail through Compressive Strength Measurements

View More View Less
  • 1 Insurance Institute for Business and Home Safety, Richburg, South Carolina
  • | 2 Technology Research and Innovation Laboratory, State Farm Mutual Automobile Insurance Company, Bloomington, Illinois
  • | 3 Insurance Institute for Business and Home Safety, Richburg, South Carolina
© Get Permissions
Restricted access

Abstract

Throughout historical literature anecdotal or visual observations have been used to describe the hardness property of hailstones (e.g., hard, soft, slushy). A unique field measurement device was designed and built to apply a compressive force to the point of fracture on hailstones in the field. The device uses a pistol-grip clamp to apply a compressive load to a hailstone and integrates a fast-response load cell and associated data acquisition components to measure the applied force through the point of fracture. The strain rate applied to the stone is fast enough to produce a brittle failure, and the peak compressive force is appropriately scaled by the cross-sectional area to produce a compressive stress value. When compared to an Instron universal testing machine (UTM), the field measurement device exhibited a low bias induced by measurement hardware sampling limits. When a low-pass filter was applied to the Instron data to replicate the hardware properties of the field measurement device, good agreement was found for compressive force tests performed on laboratory ice spheres, and it was clear the device was capturing a relative measure of strength. The mean compressive stress for natural hail was similar to that of pure ice spheres, but individual thunderstorm events exhibited variability. Laboratory ice spheres also showed significant variability, which argues for large sample sizes when testing any material for impact resistance.

Corresponding author address: Ian M. Giammanco, Insurance Institute for Business and Home Safety, 5335 Richburg Rd., Richburg, SC 29729. E-mail: igiammanco@ibhs.org

Additional affiliation: Texas Tech University, Lubbock, Texas.

Abstract

Throughout historical literature anecdotal or visual observations have been used to describe the hardness property of hailstones (e.g., hard, soft, slushy). A unique field measurement device was designed and built to apply a compressive force to the point of fracture on hailstones in the field. The device uses a pistol-grip clamp to apply a compressive load to a hailstone and integrates a fast-response load cell and associated data acquisition components to measure the applied force through the point of fracture. The strain rate applied to the stone is fast enough to produce a brittle failure, and the peak compressive force is appropriately scaled by the cross-sectional area to produce a compressive stress value. When compared to an Instron universal testing machine (UTM), the field measurement device exhibited a low bias induced by measurement hardware sampling limits. When a low-pass filter was applied to the Instron data to replicate the hardware properties of the field measurement device, good agreement was found for compressive force tests performed on laboratory ice spheres, and it was clear the device was capturing a relative measure of strength. The mean compressive stress for natural hail was similar to that of pure ice spheres, but individual thunderstorm events exhibited variability. Laboratory ice spheres also showed significant variability, which argues for large sample sizes when testing any material for impact resistance.

Corresponding author address: Ian M. Giammanco, Insurance Institute for Business and Home Safety, 5335 Richburg Rd., Richburg, SC 29729. E-mail: igiammanco@ibhs.org

Additional affiliation: Texas Tech University, Lubbock, Texas.

Save