• Bambot, S. B., , Holavanahali R. , , Lakowicz J. R. , , Carter G. M. , , and Rao G. , 1994: Phase fluorometric sterilizable optical oxygen sensor. Biotechnol. Bioeng., 43, 11391145, doi:10.1002/bit.260431119.

    • Search Google Scholar
    • Export Citation
  • Bittig, H., , and Körtzinger A. , 2015: Tackling oxygen optode drift: Near-surface and in-air oxygen optode measurements on a float provide an accurate in situ reference. J. Atmos. Oceanic Technol., 32, 15361543, doi:10.1175/JTECH-D-14-00162.1.

    • Search Google Scholar
    • Export Citation
  • Bittig, H., , Fiedler B. , , Scholz R. , , Krahmann G. , , and Körtzinger A. , 2014: Time response of oxygen optodes on profiling platforms and its dependence on flow speed and temperature. Limnol. Oceanogr.: Methods, 12, 617636, doi:10.4319/lom.2014.12.617.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and et al. , 2013: World Ocean Database 2013. S. Levitus and A. Mishonov, Eds., NOAA Atlas NESDIS 72, 209 pp., doi:10.7289/V5NZ85MT.

  • Broecker, W. S., , and Peng T. H. , 1974: Gas exchange rates between air and sea. Tellus, 26A, 2135, doi:10.1111/j.2153-3490.1974.tb01948.x.

    • Search Google Scholar
    • Export Citation
  • Czeschel, R., , Stramma L. , , and Johnson G. C. , 2012: Oxygen decreases and variability in the eastern equatorial Pacific. J. Geophys. Res., 117, C11019, doi:10.1029/2012JC008043.

    • Search Google Scholar
    • Export Citation
  • Dalsgaard, T., , Stewart F. J. , , Thamdrup B. , , De Brabandere L. , , Revsbech N. P. , , Ulloa O. , , Canfield D. E. , , and DeLong E. F. , 2014: Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. MBio, 5, e01966-e14, doi:10.1128/mBio.01966-14.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., , and McNeil C. , 2013: Calibration and stability of oxygen sensors on autonomous floats. J. Atmos. Oceanic Technol., 30, 18961906, doi:10.1175/JTECH-D-12-00222.1.

    • Search Google Scholar
    • Export Citation
  • Emerson, S., , and Bushinsky S. , 2014: Oxygen concentrations and biological fluxes in the open ocean. Oceanography, 27, 168171, doi:10.5670/oceanog.2014.20.

    • Search Google Scholar
    • Export Citation
  • Emerson, S., , Stump C. , , and Nicholson D. , 2008: Net biological oxygen production in the ocean: Remote in situ measurements of O2 and N2 in surface waters. Global Biogeochem. Cycles, 22, GB3023, doi:10.1029/2007GB003095.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B., , Fietzek P. , , Vieira N. , , Silva P. , , Bittig H. C. , , and Körtzinger A. , 2013: In situ CO2 and O2 measurements on a profiling float. J. Atmos. Oceanic Technol., 30, 112126, doi:10.1175/JTECH-D-12-00043.1.

    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., , and Gordon L. I. , 1992: Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr., 37, 13071312, doi:10.4319/lo.1992.37.6.1307.

    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., , Locarnini R. A. , , Boyer T. P. , , Antonov J. I. , , Baranova O. K. , , Zweng M. M. , , and Johnson D. R. , 2010: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. Vol. 3, World Ocean Atlas 2009, NOAA Atlas NESDIS 70, 28 pp.

  • Gruber, N., and et al. , 2010: Adding oxygen to Argo: Developing a global in situ observatory for ocean deoxygenation and biogeochemistry. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306, doi:10.5270/OceanObs09.cwp.39.

  • Hines, K. M., , Bromwich D. H. , , and Marshall G. J. , 2000: Artificial surface pressure trends in the NCEP–NCAR reanalysis over the Southern Ocean and Antarctica. J. Climate, 13, 39403952, doi:10.1175/1520-0442(2000)013<3940:ASPTIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, K. S., , Riser S. C. , , and Karl D. M. , 2010: Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature, 465, 10621065, doi:10.1038/nature09170.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E. M., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keeling, R. F., , Körtzinger A. , , and Gruber N. , 2010: Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci., 2, 199229, doi:10.1146/annurev.marine.010908.163855.

    • Search Google Scholar
    • Export Citation
  • Kihm, C., , and Körtzinger A. , 2010: Air-sea gas transfer velocity for oxygen derived from float data. J. Geophys. Res., 115, C12003, doi:10.1029/2009JC006077.

    • Search Google Scholar
    • Export Citation
  • Klimant, I., , Kühl M. , , Glud R. N. , , and Holst G. , 1997: Optical measurement of oxygen and temperature in microscale: Strategies and biological applications. Sens. Actuators, 38B, 2937, doi:10.1016/S0925-4005(97)80168-2.

    • Search Google Scholar
    • Export Citation
  • Körtzinger, A., , Schimanski J. , , Send U. , , and Wallace D. , 2004: The ocean takes a deep breath. Science, 306, 1337, doi:10.1126/science.1102557.

    • Search Google Scholar
    • Export Citation
  • Körtzinger, A., , Schimanski J. , , and Send U. , 2005: High-quality oxygen measurements from profiling floats: A promising new technique. J. Atmos. Oceanic Technol., 22, 302308, doi:10.1175/JTECH1701.1.

    • Search Google Scholar
    • Export Citation
  • Lakowicz, J. R., 2006: Principles of Fluorescence Spectroscopy. 3rd ed. Springer, 954 pp.

  • Lippitsch, M. E., , Pusterhoffer J. , , Leiner M. J. P. , , and Wolfbeis O. S. , 1988: Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier. Anal. Chim. Acta, 205, 16, doi:10.1016/S0003-2670(00)82310-7.

    • Search Google Scholar
    • Export Citation
  • Luz, B., , and Barkan E. , 2000: Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science, 288, 20282031, doi:10.1126/science.288.5473.2028.

    • Search Google Scholar
    • Export Citation
  • Martz, T. R., , Johnson K. S. , , and Riser S. C. , 2008: Ocean metabolism observed with oxygen sensors on profiling floats in the Pacific. Limnol. Oceanogr., 53, 20942111, doi:10.4319/lo.2008.53.5_part_2.2094.

    • Search Google Scholar
    • Export Citation
  • Martz, T. R., , Send U. , , Ohman M. D. , , Takeshita Y. , , Breshahan P. , , Kim H.-J. , , and Nam S. , 2014: Dynamic variability of biogeochemical ratios in the Southern California Current System. Geophys. Res. Lett., 41, 24962501, doi:10.1002/2014GL059332.

    • Search Google Scholar
    • Export Citation
  • NCEI, 2015: World Ocean Atlas 2009. National Centers for Environmental Information, accessed 3 August 2015. [Available online at http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html.]

  • NCEP, 2015: NCEP/NCAR Reanalysis 1. National Centers for Environmental Prediction, accessed 2 April 2015. [Available online at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html.]

  • Prakash, S., , Nair T. M. B. , , Bhaskar T. V. S. U. , , Prakash P. , , and Gilbert D. , 2012: Oxycline variability in the central Arabian Sea: An Argo-oxygen study. J. Sea Res., 71, 18, doi:10.1016/j.seares.2012.03.003.

    • Search Google Scholar
    • Export Citation
  • Riser, S. C., , and Johnson K. S. , 2008: Net production of oxygen in the subtropical ocean. Nature, 451, 323325, doi:10.1038/nature06441.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., , Legler D. M. , , and Verzone K. V. , 2001: Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J. Climate, 14, 40624072, doi:10.1175/1520-0442(2001)014<4062:QUINRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takeshita, Y., , Martz T. R. , , Johnson K. S. , , Plant J. N. , , Gilbert D. , , Riser S. C. , , Neill C. , , and Tilbrook B. , 2013: A climatology-based quality control procedure for profiling float oxygen data. J. Geophys. Res. Oceans, 118, 56405650, doi:10.1002/jgrc.20399.

    • Search Google Scholar
    • Export Citation
  • Tanhua, T., , van Heuven S. , , Key R. M. , , Velo A. , , Olsen A. , , and Schirnick C. , 2010: Quality control procedures and methods of the CARINA database. Earth Syst. Sci. Data, 2, 3549, doi:10.5194/essd-2-35-2010.

    • Search Google Scholar
    • Export Citation
  • Tengberg, A., and et al. , 2006: Evaluation of a lifetime-based optode to measure oxygen in aquatic systems. Limnol. Oceanogr. Methods, 4, 717, doi:10.4319/lom.2006.4.7.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., , Curran T. A. , , Hamilton M. C. , , and McFarlane R. , 1988: Time series measurements from a moored fluorescence-based dissolved oxygen sensor. J. Atmos. Oceanic Technol., 5, 614624, doi:10.1175/1520-0426(1988)005<0614:TSMFAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uchida, H., , Kawano T. , , Kaneko I. , , and Fukasawa M. , 2008: In situ calibration of optode-based oxygen sensors. J. Atmos. Oceanic Technol., 25, 22712281, doi:10.1175/2008JTECHO549.1.

    • Search Google Scholar
    • Export Citation
  • Ulloa, O., , Canfield D. E. , , DeLong E. F. , , Letelier R. M. , , and Stewart F. J. , 2012: Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl. Acad. Sci. USA, 109, 15 99616 003, doi:10.1073/pnas.1205009109.

    • Search Google Scholar
    • Export Citation
  • Weeding, B., , and Trull T. W. , 2014: Hourly oxygen and total gas tension measurements at the Southern Ocean Time Series site reveal winter ventilation and spring net community production. J. Geophys. Res. Oceans, 119, 348358, doi:10.1002/2013JC009302.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 183 183 21
PDF Downloads 134 134 22

Air Oxygen Calibration of Oxygen Optodes on a Profiling Float Array

View More View Less
  • 1 Monterey Bay Aquarium Research Institute, Moss Landing, California
  • | 2 School of Oceanography, University of Washington, Seattle, Washington
  • | 3 Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Québec, Canada
© Get Permissions
Restricted access

Abstract

Aanderaa optode sensors for dissolved oxygen show remarkable stability when deployed on profiling floats, but these sensors suffer from poor calibration because of an apparent drift during storage (storage drift). It has been suggested that measurement of oxygen in air, during the period when a profiling float is on the surface, can be used to improve sensor calibration and to determine the magnitude of sensor drift while deployed in the ocean. The effect of air calibration on oxygen measurement quality with 47 profiling floats that were equipped with Aanderaa oxygen optode sensors is assessed. Recalibrated oxygen concentration measurements were compared to Winkler oxygen titrations that were made at the float deployment stations and to the World Ocean Atlas 2009 oxygen climatology. Recalibration of the sensor using air oxygen reduces the sensor error, defined as the difference from Winkler oxygen titrations in the mixed layer near the time of deployment, by about tenfold when compared to errors obtained with the factory calibration. The relative error of recalibrated sensors is <1% in surface waters. A total of 29 floats were deployed for time periods in excess of one year in ice-free waters. Linear changes in the percent of atmospheric oxygen reported by the sensor, relative to the oxygen partial pressure expected from the NCEP air pressure, range from −0.9% to +1.3% yr−1 with a mean of 0.2% ± 0.5% yr−1. Given that storage drift for optode sensors is only negative, it is concluded that there is no evidence for sensor drift after they are deployed and that other processes are responsible for the linear changes.

Denotes Open Access content.

Publisher’s Note: This article was revised on 10 December 2015 to include the open access designation that was missing when originally published.

Corresponding author address: Kenneth S. Johnson, MBARI, 7700 Sandholdt Road, Moss Landing, CA 95039. E-mail: johnson@mbari.org

Abstract

Aanderaa optode sensors for dissolved oxygen show remarkable stability when deployed on profiling floats, but these sensors suffer from poor calibration because of an apparent drift during storage (storage drift). It has been suggested that measurement of oxygen in air, during the period when a profiling float is on the surface, can be used to improve sensor calibration and to determine the magnitude of sensor drift while deployed in the ocean. The effect of air calibration on oxygen measurement quality with 47 profiling floats that were equipped with Aanderaa oxygen optode sensors is assessed. Recalibrated oxygen concentration measurements were compared to Winkler oxygen titrations that were made at the float deployment stations and to the World Ocean Atlas 2009 oxygen climatology. Recalibration of the sensor using air oxygen reduces the sensor error, defined as the difference from Winkler oxygen titrations in the mixed layer near the time of deployment, by about tenfold when compared to errors obtained with the factory calibration. The relative error of recalibrated sensors is <1% in surface waters. A total of 29 floats were deployed for time periods in excess of one year in ice-free waters. Linear changes in the percent of atmospheric oxygen reported by the sensor, relative to the oxygen partial pressure expected from the NCEP air pressure, range from −0.9% to +1.3% yr−1 with a mean of 0.2% ± 0.5% yr−1. Given that storage drift for optode sensors is only negative, it is concluded that there is no evidence for sensor drift after they are deployed and that other processes are responsible for the linear changes.

Denotes Open Access content.

Publisher’s Note: This article was revised on 10 December 2015 to include the open access designation that was missing when originally published.

Corresponding author address: Kenneth S. Johnson, MBARI, 7700 Sandholdt Road, Moss Landing, CA 95039. E-mail: johnson@mbari.org
Save