• Aoki, S., , Rintoul S. R. , , Ushio S. , , Watanabe S. , , and Bindoff N. L. , 2005: Freshening of the Adélie Land Bottom Water near 140°E. Geophys. Res. Lett., 32, L23601, doi:10.1029/2005GL024246.

    • Search Google Scholar
    • Export Citation
  • Bamber, J., , and Riva R. , 2010: The sea level fingerprint of recent ice mass fluxes. Cryosphere, 4, 621627, doi:10.5194/tc-4-621-2010.

    • Search Google Scholar
    • Export Citation
  • Byrne, R. H., , Mecking S. , , Feely R. A. , , and Liu X. , 2010: Direct observations of basin-wide acidification of the North Pacific Ocean. Geophys. Res. Lett., 37, L02601, doi:10.1029/2009GL040999.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and et al. , 2013: Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean. Geophys. Res. Lett., 40, 62026207, doi:10.1002/2013GL058464.

    • Search Google Scholar
    • Export Citation
  • Dieng, H. B., , Palanisamy H. , , Cazenave A. , , Meyssignac B. , , and von Schuckmann K. , 2015: The sea level budget since 2003: Inference on the deep ocean heat content. Surv. Geophys., 36, 209229, doi:10.1007/s10712-015-9314-6.

    • Search Google Scholar
    • Export Citation
  • Fine, R. A., 2011: Observations of CFCs and SF6 as ocean tracers. Annu. Rev. Mar. Sci., 3, 173195, doi:10.1146/annurev.marine.010908.163933.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., 2003: Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J. Geophys. Res., 108, 3213, doi:10.1029/2002JC001565.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1982: Weddell Deep Water variability. J. Mar. Res., 40, 199217.

  • Gouretski, V. V., , and Koltermann K. P. , 2004: WOCE global hydrographic climatology. Berichte des Bundesamtes fur Seeschifffahrt und Hydrographie 35/2004, 52 pp.

  • Gouriou, Y., , Bourlès B. , , Mercier H. , , and Chuchla R. , 1999: Deep jets in the equatorial Atlantic Ocean. J. Geophys. Res., 104, 21 21721 226, doi:10.1029/1999JC900057.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 2008: Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res., 113, C05027, doi:10.1029/2007JC004477.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , and Zhang D. , 2003: Structure of the Atlantic Ocean equatorial deep jets. J. Phys. Oceanogr., 33, 600609, doi:10.1175/1520-0485(2003)033<0600:SOTAOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , and Doney S. C. , 2006: Recent western South Atlantic bottom water warming. Geophys. Res. Lett., 33, L14614, doi:10.1029/2006GL026769; Corrigendum, 33, L21604, doi:10.1029/2006GL028294.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , and Lyman J. M. , 2014: Oceanography: Where’s the heat? Nat. Climate Change, 4, 956957, doi:10.1038/nclimate2409.

  • Johnson, G. C., , Bullister J. L. , , and Gruber N. , 2005: Labrador Sea Water property variations in the northeastern Atlantic Ocean. Geophys. Res. Lett., 32, L07602, doi:10.1029/2005GL022404.

    • Search Google Scholar
    • Export Citation
  • Jullion, L., , Naveira Garabato A. C. , , Meredith M. P. , , Holland P. R. , , Courtois P. , , and King B. A. , 2013: Decadal freshening of the Antarctic Bottom Water exported from the Weddell Sea. J. Climate, 26, 81118125, doi:10.1175/JCLI-D-12-00765.1.

    • Search Google Scholar
    • Export Citation
  • Klatt, O., , Boebel O. , , and Fahrbach E. , 2007: A profiling float’s sense of ice. J. Atmos. Oceanic Technol., 24, 13011308, doi:10.1175/JTECH2026.1.

    • Search Google Scholar
    • Export Citation
  • Kouketsu, S., and et al. , 2011: Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J. Geophys. Res., 116, C03012, doi:10.1029/2010JC006464.

    • Search Google Scholar
    • Export Citation
  • Llovel, W., , Willis J. K. , , Landerer F. W. , , and Fukumori I. , 2014: Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat. Climate Change, 4, 10311035, doi:10.1038/nclimate2387.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., , and Speer K. , 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Mauritzen, C., , Melsom A. , , and Sutton R. T. , 2012: Importance of density-compensated temperature change for deep North Atlantic Ocean heat uptake. Nat. Geosci., 5, 905910, doi:10.1038/ngeo1639.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., 2008: Accuracy in mooring motion temperature corrections. J. Atmos. Oceanic Technol., 25, 22932303, doi:10.1175/2008JTECHO555.1.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., , Frankignoul C. , , and Li L. Z. X. , 2011: Mechanisms of the atmospheric response to North Atlantic multidecadal variability: A model study. Climate Dyn., 36, 12551276, doi:10.1007/s00382-010-0958-0.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., , Johnson G. C. , , and Bullister J. L. , 1999: Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55109, doi:10.1016/S0079-6611(99)00004-X.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., , and Johnson G. C. , 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, doi:10.1175/2010JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., , and Johnson G. C. , 2012: Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Climate, 25, 58305844, doi:10.1175/JCLI-D-11-00612.1.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and et al. , 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 255–315.

  • Robson, J. I., , Sutton R. T. , , and Smith D. M. , 2012: Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophys. Res. Lett., 39, L19713, doi:10.1029/2012GL053370.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , and Gilson J. , 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, doi:10.1016/j.pocean.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and et al. , 2009: The Argo Program: Observing the global ocean with profiling floats. Oceanography, 22, 3443, doi:10.5670/oceanog.2009.36.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , Church J. , , Gilson J. , , Monselesan D. , , Sutton P. , , and Wijffels S. , 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, doi:10.1038/nclimate2513.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., , and Tanhua T. , 2010: Estimation of anthropogenic CO2 inventories in the ocean. Annu. Rev. Mar. Sci., 2, 175198, doi:10.1146/annurev-marine-120308-080947.

    • Search Google Scholar
    • Export Citation
  • Smeed, D. A., and et al. , 2014: Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci., 10, 2938, doi:10.5194/os-10-29-2014.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , Reynolds R. W. , , Peterson T. C. , , and Lawrimore J. , 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Somavilla, R., , Schauer U. , , and Budéus G. , 2013: Increasing amount of Arctic Ocean deep waters in the Greenland Sea. Geophys. Res. Lett., 40, 43614366, doi:10.1002/grl.50775.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., , Johnson G. C. , , Sprintall J. , , and Mohrholz V. , 2008: Expanding oxygen-minimum zones in the tropical oceans. Science, 320, 655658, doi:10.1126/science.1153847.

    • Search Google Scholar
    • Export Citation
  • Swift, J. H., , and Orsi A. H. , 2012: Sixty-four days of hydrography and storms: RVIB Nathaniel B. Palmer’s 2011 S04P Cruise. Oceanography, 25, 5455, doi:10.5670/oceanog.2012.74.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., , and Johnson G. C. , 1994: Deep, zonal subequatorial currents. Science, 263, 11251128, doi:10.1126/science.263.5150.1125.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and et al. , 2015: Changes in ocean heat, carbon content, and ventilation: Review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci., doi:10.1146/annurev-marine-052915-10082, in press.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 1980: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, 272 pp.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., , Krishfield R. A. , , Timmermans M.-L. , , and Proshutinsky A. , 2011: The ice-tethered profiler: Argo of the Arctic. Oceanography, 24, 126135, doi:10.5670/oceanog.2011.64.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and Zwiers F. W. , 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wong, A. P. S., , Johnson G. C. , , and Owens W. B. , 2003: Delayed-mode calibration of autonomous CTD profiling float salinity data by θ–S climatology. J. Atmos. Oceanic Technol., 20, 308318, doi:10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960-2005. Prog. Oceanogr., 73, 242276, doi:10.1016/j.pocean.2007.04.015.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., , Karspeck A. , , Danabasoglu G. , , Tribbia J. , , and Teng H. Y. , 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 51735189, doi:10.1175/JCLI-D-11-00595.1.

    • Search Google Scholar
    • Export Citation
  • Youngs, M. K., , and Johnson G. C. , 2015: Basin-wavelength equatorial deep jet signals across three oceans. J. Phys. Oceanogr., 45, 21342148, doi:10.1175/JPO-D-14-0181.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 141 141 10
PDF Downloads 98 98 10

Informing Deep Argo Array Design Using Argo and Full-Depth Hydrographic Section Data

View More View Less
  • 1 NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
  • | 2 NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington, and Joint Institute for Marine and Atmospheric Research, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • | 3 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
© Get Permissions
Restricted access

Abstract

Data from full-depth closely sampled hydrographic sections and Argo floats are analyzed to inform the design of a future Deep Argo array. Here standard errors of local decadal temperature trends and global decadal trends of ocean heat content and thermosteric sea level anomalies integrated from 2000 to 6000 dbar are estimated for a hypothetical 5° latitude × 5° longitude × 15-day cycle Deep Argo array. These estimates are made using temperature variances from closely spaced full-depth CTD profiles taken during hydrographic sections. The temperature data along each section are high passed laterally at a 500-km scale, and the resulting variances are averaged in 5° × 5° bins to assess temperature noise levels as a function of pressure and geographic location. A mean global decorrelation time scale of 62 days is estimated using temperature time series at 1800 dbar from Argo floats. The hypothetical Deep Argo array would be capable of resolving, at one standard error, local trends from <1 m °C decade−1 in the quiescent abyssal North Pacific to about 26 m °C decade−1 below 2000 dbar along 50°S in the energetic Southern Ocean. Larger decadal temperature trends have been reported previously in these regions using repeat hydrographic section data, but those very sparse data required substantial spatial averaging to obtain statistically significant results. Furthermore, the array would provide decadal global ocean heat content trend estimates from 2000 to 6000 dbar with a standard error of ±3 TW, compared to a trend standard error of ±17 TW from a previous analysis of repeat hydrographic data.

Pacific Marine Environmental Laboratory Contribution Number 4351 and Joint Institute for Marine and Atmospheric Research Contribution Number 15-391.

Corresponding author address: Gregory C. Johnson, NOAA/Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Bldg. 3, Seattle, WA 98115. E-mail: gregory.c.johnson@noaa.gov

Abstract

Data from full-depth closely sampled hydrographic sections and Argo floats are analyzed to inform the design of a future Deep Argo array. Here standard errors of local decadal temperature trends and global decadal trends of ocean heat content and thermosteric sea level anomalies integrated from 2000 to 6000 dbar are estimated for a hypothetical 5° latitude × 5° longitude × 15-day cycle Deep Argo array. These estimates are made using temperature variances from closely spaced full-depth CTD profiles taken during hydrographic sections. The temperature data along each section are high passed laterally at a 500-km scale, and the resulting variances are averaged in 5° × 5° bins to assess temperature noise levels as a function of pressure and geographic location. A mean global decorrelation time scale of 62 days is estimated using temperature time series at 1800 dbar from Argo floats. The hypothetical Deep Argo array would be capable of resolving, at one standard error, local trends from <1 m °C decade−1 in the quiescent abyssal North Pacific to about 26 m °C decade−1 below 2000 dbar along 50°S in the energetic Southern Ocean. Larger decadal temperature trends have been reported previously in these regions using repeat hydrographic section data, but those very sparse data required substantial spatial averaging to obtain statistically significant results. Furthermore, the array would provide decadal global ocean heat content trend estimates from 2000 to 6000 dbar with a standard error of ±3 TW, compared to a trend standard error of ±17 TW from a previous analysis of repeat hydrographic data.

Pacific Marine Environmental Laboratory Contribution Number 4351 and Joint Institute for Marine and Atmospheric Research Contribution Number 15-391.

Corresponding author address: Gregory C. Johnson, NOAA/Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Bldg. 3, Seattle, WA 98115. E-mail: gregory.c.johnson@noaa.gov
Save