The Evolution of the Goddard Profiling Algorithm to a Fully Parametric Scheme

Christian D. Kummerow * Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Christian D. Kummerow in
Current site
Google Scholar
PubMed
Close
,
David L. Randel * Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David L. Randel in
Current site
Google Scholar
PubMed
Close
,
Mark Kulie University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Mark Kulie in
Current site
Google Scholar
PubMed
Close
,
Nai-Yu Wang I.M. Systems Group, and NOAA/NESDIS, College Park, Maryland

Search for other papers by Nai-Yu Wang in
Current site
Google Scholar
PubMed
Close
,
Ralph Ferraro NOAA/NESDIS, College Park, Maryland

Search for other papers by Ralph Ferraro in
Current site
Google Scholar
PubMed
Close
,
S. Joseph Munchak Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by S. Joseph Munchak in
Current site
Google Scholar
PubMed
Close
, and
Veljko Petkovic * Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Veljko Petkovic in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Goddard profiling algorithm has evolved from a pseudoparametric algorithm used in the current TRMM operational product (GPROF 2010) to a fully parametric approach used operationally in the GPM era (GPROF 2014). The fully parametric approach uses a Bayesian inversion for all surface types. The algorithm thus abandons rainfall screening procedures and instead uses the full brightness temperature vector to obtain the most likely precipitation state. This paper offers a complete description of the GPROF 2010 and GPROF 2014 algorithms and assesses the sensitivity of the algorithm to assumptions related to channel uncertainty as well as ancillary data. Uncertainties in precipitation are generally less than 1%–2% for realistic assumptions in channel uncertainties. Consistency among different radiometers is extremely good over oceans. Consistency over land is also good if the diurnal cycle is accounted for by sampling GMI product only at the time of day that different sensors operate. While accounting for only a modest amount of the total precipitation, snow-covered surfaces exhibit differences of up to 25% between sensors traceable to the availability of high-frequency (166 and 183 GHz) channels. In general, comparisons against early versions of GPM’s Ku-band radar precipitation estimates are fairly consistent but absolute differences will be more carefully evaluated once GPROF 2014 is upgraded to use the full GPM-combined radar–radiometer product for its a priori database. The combined algorithm represents a physically constructed database that is consistent with both the GPM radars and the GMI observations, and thus it is the ideal basis for a Bayesian approach that can be extended to an arbitrary passive microwave sensor.

Corresponding author address: Christian D. Kummerow, Department of Atmospheric Science, Colorado State University, 200 West Lake Street, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: kummerow@atmos.colostate.edu

This article is included in the Precipitation Retrieval Algorithms for GPM special collection.

Abstract

The Goddard profiling algorithm has evolved from a pseudoparametric algorithm used in the current TRMM operational product (GPROF 2010) to a fully parametric approach used operationally in the GPM era (GPROF 2014). The fully parametric approach uses a Bayesian inversion for all surface types. The algorithm thus abandons rainfall screening procedures and instead uses the full brightness temperature vector to obtain the most likely precipitation state. This paper offers a complete description of the GPROF 2010 and GPROF 2014 algorithms and assesses the sensitivity of the algorithm to assumptions related to channel uncertainty as well as ancillary data. Uncertainties in precipitation are generally less than 1%–2% for realistic assumptions in channel uncertainties. Consistency among different radiometers is extremely good over oceans. Consistency over land is also good if the diurnal cycle is accounted for by sampling GMI product only at the time of day that different sensors operate. While accounting for only a modest amount of the total precipitation, snow-covered surfaces exhibit differences of up to 25% between sensors traceable to the availability of high-frequency (166 and 183 GHz) channels. In general, comparisons against early versions of GPM’s Ku-band radar precipitation estimates are fairly consistent but absolute differences will be more carefully evaluated once GPROF 2014 is upgraded to use the full GPM-combined radar–radiometer product for its a priori database. The combined algorithm represents a physically constructed database that is consistent with both the GPM radars and the GMI observations, and thus it is the ideal basis for a Bayesian approach that can be extended to an arbitrary passive microwave sensor.

Corresponding author address: Christian D. Kummerow, Department of Atmospheric Science, Colorado State University, 200 West Lake Street, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: kummerow@atmos.colostate.edu

This article is included in the Precipitation Retrieval Algorithms for GPM special collection.

Save
  • Aires, F., Prigent C. , Bernardo F. , Jiménez C. , Saunders R. , and Brunel P. , 2011: A tool to estimate land-surface emissivities at microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690699, doi:10.1002/qj.803.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., Amayenc P. , Kummerow C. D. , and Smith E. A. , 2001: Over-ocean rainfall retrieval from multisensor data of the Tropical Rainfall Measuring Mission. Part II: Algorithm implementation. J. Atmos. Oceanic Technol., 18, 18381855, doi:10.1175/1520-0426(2001)018<1838:OORRFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, W., L’Ecuyer T. , and Kummerow C. D. , 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434–454, doi:10.1175/JAM2331.1.

  • Caine, S., Lane T. P. , May P. T. , Jakob C. , Siems S. T. , Manton M. J. , and Pinto J. , 2013: Statistical assessment of tropical convection-permitting model simulations using a cell-tracking algorithm. Mon. Wea. Rev., 141, 557581, doi:10.1175/MWR-D-11-00274.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., and Kummerow C. D. , 2008: Toward a fully parametric retrieval of the non-raining parameters over the global oceans. J. Appl. Meteor. Climatol., 47, 15991618, doi:10.1175/2007JAMC1712.1.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., and Kummerow C. D. , 2015: The sensitivity of rainfall estimation to error assumptions in a Bayesian passive microwave retrieval algorithm. J. Appl. Meteor. Climatol., 54, 408422, doi:10.1175/JAMC-D-14-0105.1.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., Turk J. , Wong T. , and Stephens G. L. , 1995: A Bayesian approach to microwave precipitation profile retrieval. J. Appl. Meteor., 34, 260279, doi:10.1175/1520-0450-34.1.260.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., Grody N. C. , and Marks G. F. , 1994: Effects of surface conditions on rain identification using SSM/I. Remote Sens. Rev., 11, 195209, doi:10.1080/02757259409532265.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., Smith E. A. , Berg W. , and Huffman G. J. , 1998: A screening methodology for passive microwave precipitation retrieval algorithms. J. Atmos. Sci., 55, 15831600, doi:10.1175/1520-0469(1998)055<1583:ASMFPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Forgy, E., 1965: Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics, 21, 768769.

  • Gopalan, K., Wang N.-Y. , Ferraro R. , and Liu C. , 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, doi:10.1175/2010JTECHA1454.1.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the special sensor microwave imager. J. Geophys. Res., 96, 74237435, doi:10.1029/91JD00045.

    • Search Google Scholar
    • Export Citation
  • Hartigan, J. A., and Wong M. A. , 1979: Algorithm AS 136: A K-means clustering algorithm. J. Roy. Stat. Soc., 28C, 100108, doi:10.2307/2346830.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., Pierce J. L. , and Poe G. A. , 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781790, doi:10.1109/36.58964.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • JMA, 2000: New numerical analysis and forecast system (in Japanese). Japan Meteorological Agency Annual Rep. 33, 143 pp.

  • Kummerow, C. D., and Giglio L. , 1994: A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. J. Appl. Meteor., 33, 318, doi:10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Olson W. S. , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, doi:10.1109/36.536538.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Berg W. , Thomas-Stahle J. , and Masunaga H. , 2006: Quantifying global uncertainties in a simple microwave rainfall algorithm. J. Atmos. Oceanic Technol., 23, 2337, doi:10.1175/JTECH1827.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Zipser E. J. , 2009: “Warm rain” in the tropics: Seasonal and regional distribution based on 9 years of TRMM data. J. Climate, 22, 767779, doi:10.1175/2008JCLI2641.1.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., Mugnai A. , Panegrossi G. , Pierdicca N. , Smith E. A. , and Turk J. , 1999: Bayesian estimation of precipitating cloud parameters from combined measurements of spaceborne microwave radiometer and radar. IEEE Trans. Geosci. Remote Sens., 37, 596613, doi:10.1109/36.739124.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., and Ferraro R. R. , 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 83828404, doi:10.1029/2001JD001512.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., Kummerow C. D. , Heymsfield G. M. , and Giglio L. , 1996: A method for combined passive–active microwave retrievals of cloud and precipitation profiles. J. Appl. Meteor., 35, 17631789, doi:10.1175/1520-0450(1996)035<1763:AMFCPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Smith T. M. , Liu C. , Chelton D. B. , Casey K. S. , and Schlax M. G. , 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Banzon V. F. , and NOAA CDR Program, 2008: NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) analysis, version 2. NOAA National Climatic Data Center, accessed 4 December 2015, doi:10.7289/V5SQ8XB5.

  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific, 238 pp.

  • Roh, W., and Satoh M. , 2014: Evaluation of precipitating hydrometeor parameterizations in a single-moment bulk microphysics scheme for deep convective systems over the tropical central Pacific. J. Atmos. Sci., 71, 26542673, doi:10.1175/JAS-D-13-0252.1.

    • Search Google Scholar
    • Export Citation
  • Romanov, P., Gutman G. , and Csiszar I. , 2000: Automated monitoring of snow cover over North America with multispectral satellite data. J. Appl. Meteor., 39, 18661880, doi:10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., Adler R. F. , and North G. R. , 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295, doi:10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Simpson J. , 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 3572.

  • Tao, W.-K., and Coauthors, 2009: A multiscale modeling system: Developments, applications, and critical issues. Bull. Amer. Meteor. Soc., 90, 515534, doi:10.1175/2008BAMS2542.1.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., 1992: A nonhydrostatic model designed to simulate scale interaction. Mon. Wea. Rev., 120, 13421359, doi:10.1175/1520-0493(1992)120<1342:ANMMDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viltard, N., Burlaud C. , and Kummerow C. D. , 2006: Rain retrieval from TMI brightness temperature measurements using a TRMM PR–based database. J. Appl. Meteor. Climatol., 45, 455466, doi:10.1175/JAM2346.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J.-J., Li X. , and Carey L. D. , 2007: Evolution, structure, cloud microphysical, and surface rainfall processes of monsoon convection during the South China Sea Monsoon Experiment. J. Atmos. Sci., 64, 360380, doi:10.1175/JAS3852.1.

    • Search Google Scholar
    • Export Citation
  • Wang, N.-Y., Liu C. , Ferraro R. , Wolff D. , Zipser E. , and Kummerow C. D. , 2009: TRMM 2A12 land precipitation product—Status and future plans. J. Meteor. Soc. Japan, 87A, 237253, doi:10.2151/jmsj.87A.237.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2472 875 113
PDF Downloads 1281 374 29