• Abraham, J. P., , Gorman J. M. , , Reseghetti F. , , Sparrow E. M. , , and Minkowycz W. J. , 2012a: Drag coefficients for rotating expendable bathythermographs and the impact of launch parameters on depth predictions. Numer. Heat Transfer, 62A, 2543, doi:10.1080/10407782.2012.672898.

    • Search Google Scholar
    • Export Citation
  • Abraham, J. P., , Gorman J. M. , , Reseghetti F. , , Sparrow E. M. , , and Minkowycz W. J. , 2012b: Turbulent and transitional modeling of drag on oceanographic measurement devices. Modell. Simul. Eng., 2012, 567864, doi:10.1155/2012/567864.

    • Search Google Scholar
    • Export Citation
  • Abraham, J. P., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450483, doi:10.1002/rog.20022.

    • Search Google Scholar
    • Export Citation
  • Arnault, S., , Bourlès B. , , Gouriou Y. , , and Chuchla R. , 1999: Intercomparison of the upper layer circulation of the western equatorial Atlantic Ocean: In situ and satellite data. J. Geophys. Res., 104, 21 17121 194, doi:10.1029/1999JC900124.

    • Search Google Scholar
    • Export Citation
  • Arnault, S., , Pujol I. , , and Melice J. L. , 2011: In situ validation of Jason-1 and Jason-2 altimetry missions in the tropical Atlantic Ocean. Mar. Geod., 34, 319339, doi:10.1080/01490419.2011.584833.

    • Search Google Scholar
    • Export Citation
  • Baringer, M. O., , and Garzoli S. L. , 2007: Meridional heat transport determined with expendable bathythermographs—Part I: Error estimates from model and hydrographic data. Deep-Sea Res. I, 54, 13901401, doi:10.1016/j.dsr.2007.03.011.

    • Search Google Scholar
    • Export Citation
  • Brown, D., 2012: Tracker: Video analysis and modeling tool for physics education. [Available online at http://www.cabrillo.edu/~dbrown/tracker/.]

  • Carton, J. A., , and Katz E. J. , 1990: Estimates of the zonal slope and seasonal transport of the Atlantic North Equatorial Countercurrent. J. Geophys. Res., 95, 30913100, doi:10.1029/JC095iC03p03091.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Coauthors, 2015: XBT science: Assessment of instrumental biases and errors. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00031.1, in press.

    • Search Google Scholar
    • Export Citation
  • Cowley, R., , Wijffels S. , , Cheng L. , , Boyer T. , , and Kizu S. , 2013: Biases in expendable bathythermograph data: A new view based on historical side-by-side comparisons. J. Atmos. Oceanic Technol., 30, 11951225, doi:10.1175/JTECH-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , and Goni G. , 2010: Identifying and estimating biases between XBT and Argo observations using satellite altimetry. J. Atmos. Oceanic Technol., 27, 226240, doi:10.1175/2009JTECHO711.1.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , and Goni G. J. , 2011: Direct evidence of a changing fall-rate bias in XBTs manufactured during 1986–2008. J. Atmos. Oceanic Technol., 28, 15691578, doi:10.1175/JTECH-D-11-00017.1.

    • Search Google Scholar
    • Export Citation
  • Domingues, R., , Goni G. J. , , Swart S. , , and Dong S. , 2014: Wind forced variability of the Antarctic Circumpolar Current south of Africa between 1993 and 2010. J. Geophys. Res. Oceans, 119, 11231145, doi:10.1002/2013JC008908.

    • Search Google Scholar
    • Export Citation
  • Dong, S., , Garzoli S. , , Baringer M. , , Meinen C. , , and Goni G. , 2009: Interannual variations in the Atlantic meridional overturning circulation and its relationship with the net northward heat transport in the South Atlantic. Geophys. Res. Lett., 36, L20606, doi:10.1029/2009GL039356.

    • Search Google Scholar
    • Export Citation
  • Dong, S., , Baringer M. O. , , Goni G. J. , , Meinen C. S. , , and Garzoli S. L. , 2014: Seasonal variations in the South Atlantic Meridional Overturning Circulation from observations and numerical models. Geophys. Res. Lett., 41, 46114618, doi:10.1002/2014GL060428.

    • Search Google Scholar
    • Export Citation
  • Gilson, J., , Roemmich D. , , Cornuelle B. , , and Fu L.-L. , 1998: Relationship of TOPEX/Poseidon altimetric height to steric height and circulation in the North Pacific. J. Geophys. Res., 103, 27 94727 965, doi:10.1029/98JC01680.

    • Search Google Scholar
    • Export Citation
  • Goes, M., , Goni G. , , Hormann V. , , and Perez R. C. , 2013: Variability of the Atlantic off-equatorial eastward currents during 1993–2010 using a synthetic method. J. Geophys. Res. Oceans, 118, 3026–3045, doi:10.1002/jgrc.20186.

    • Search Google Scholar
    • Export Citation
  • Goes, M., , Baringer M. , , and Goni G. , 2015: The impact of historical biases on the XBT-derived meridional overturning circulation estimates at 34°S. Geophys. Res. Lett., 42, 18481855, doi:10.1002/2014GL061802.

    • Search Google Scholar
    • Export Citation
  • Goni, G., , Kamholtz S. , , Garzoli S. , , and Olson D. , 1996: Dynamics of the Brazil-Malvinas Confluence based on inverted echo sounders and altimetry. J. Geophys. Res., 101, 16 27316 289, doi:10.1029/96JC01146.

    • Search Google Scholar
    • Export Citation
  • Gourcuff, C., , Lherminier P. , , Mercier H. , , and LeTraon P.-Y. , 2011: Altimetry combined with hydrography for ocean transport estimation. J. Atmos. Oceanic Technol., 28, 13241337, doi:10.1175/2011JTECHO818.1.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., , and Koltermann K. P. , 2007: How much is the ocean really warming? Geophys. Res. Lett., 34, L01610, doi:10.1029/2006GL027834.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., , and Reseghetti F. , 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I, 57, 812833, doi:10.1016/j.dsr.2010.03.011.

    • Search Google Scholar
    • Export Citation
  • Green, A. W., 1984: Bulk dynamics of the expendable bathythermograph (XBT). Deep-Sea Res., 31, 415426, doi:10.1016/0198-0149(84)90093-1.

    • Search Google Scholar
    • Export Citation
  • Hallock, Z. R., , and Teague W. J. , 1992: The fall rate of the T-7 XBT. J. Atmos. Oceanic Technol., 9, 470483, doi:10.1175/1520-0426(1992)009<0470:TFROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamon, M., , Reverdin G. , , and Le Traon P.-Y. , 2012: Empirical correction of XBT data. J. Atmos. Oceanic Technol., 29, 960973, doi:10.1175/JTECH-D-11-00129.1.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., , and Yoritaka H. , 1987: Detection of systematic errors in XBT data and their correction. J. Oceanogr. Soc. Japan, 43, 6876, doi:10.1007/BF02110635.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., , Rual P. , , Bailey R. , , Sy A. , , and Szabados M. , 1995: A new depth time equation for Sippican or TSK T-7, T-6 and T-4 expendable bathythermographs (XBT). Deep-Sea Res. I, 42, 14231451, doi:10.1016/0967-0637(95)97154-Z.

    • Search Google Scholar
    • Export Citation
  • Heinmiller, R. H., , Ebbesmeyer C. C. , , Taft B. A. , , Olson D. B. , , and Nikitin O. P. , 1983: Systematic errors in expendable bathythermograph (XBT) profiles. Deep-Sea Res., 30A, 11851197, doi:10.1016/0198-0149(83)90096-1.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., , and Kimoto M. , 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287299, doi:10.1007/s10872-009-0027-7.

    • Search Google Scholar
    • Export Citation
  • Kizu, S., , Sukigara C. , , and Hanawa K. , 2011: Comparison of the fall rate and structure of recent T-7 XBT manufactured by Sippican and TSK. Ocean Sci., 7, 231244, doi:10.5194/os-7-231-2011.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , Antonov J. I. , , Boyer T. P. , , Locarnini R. A. , , Garcia H. E. , , and Mishonov A. V. , 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2014: WMO code table 1770. [Available online at https://www.nodc.noaa.gov/GTSPP/document/codetbls/wmocodes/table1770.html.]

  • Phillips, H. E., , and Rintoul S. R. , 2002: A mean synoptic view of the sub-Antarctic front south of Australia. J. Phys. Oceanogr., 32, 15361553, doi:10.1175/1520-0485(2002)032<1536:AMSVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reseghetti, F., , Borghini M. , , and Manzella G. M. R. , 2007: Factors affecting the quality of XBT data—Results of analysis on profiles from the western Mediterranean Sea. Ocean Sci., 3, 5975, doi:10.5194/os-3-59-2007.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., , Coleman R. C. , , Bailey R. J. , , and Sutton P. , 2008: Decadal variability of East Australian Current transport inferred from repeated high-density XBT transects, a CTD survey and satellite altimetry. J. Geophys. Res., 113, C08039, doi:10.1029/2007JC004664.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., , Sokolov S. , , and Church J. , 2002: A 6 year record of baroclinic transport variability of the Antarctic Circumpolar Current at 140°E derived from expendable bathythermograph and altimeter measurements. J. Geophys. Res., 107, 3155, doi:10.1029/2001JC000787.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , and Cornuelle B. , 1987: Digitization and calibration of the expendable bathythermograph. Deep-Sea Res., 34A, 299307, doi:10.1016/0198-0149(87)90088-4.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , Gilson J. , , Cornuelle B. , , and Weller R. , 2001: Mean and time-varying meridional transport of heat at the tropical/subtropical boundary in the North Pacific Ocean. J. Geophys. Res., 106, 89578970, doi:10.1029/1999JC000150.

    • Search Google Scholar
    • Export Citation
  • Seaver, G. A., , and Kuleshov S. , 1982: Experimental and analytical error of expendable bathythermograph. J. Phys. Oceanogr., 12, 592600, doi:10.1175/1520-0485(1982)012<0592:EAAEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Singer, J. J., 1990: On the error observed in electronically digitized T-7 XBT data. J. Atmos. Oceanic Technol., 7, 603611, doi:10.1175/1520-0426(1990)007<0603:OTEOIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, N. R., and Coauthors, 1999: The role of XBT sampling in the ocean thermal network. Proc. OceanObs’99, Saint Raphaël, France, Centre National d’Études Spatiales, 1–26.

  • Thadathil, P., , Saran A. K. , , Gopalakrishna V. V. , , Vethamony P. , , Araligidad N. , , and Bailey R. , 2002: XBT fall rate in waters of extreme temperature: A case study in the Antarctic Ocean. J. Atmos. Oceanic Technol., 19, 391396, doi:10.1175/1520-0426-19.3.391.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., , Willis J. , , Domingues C. M. , , Barker P. , , White N. J. , , Gronell A. , , Ridgway K. , , and Church J. A. , 2008: Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. J. Climate, 21, 56575672, doi:10.1175/2008JCLI2290.1.

    • Search Google Scholar
    • Export Citation
  • Xiao, H., , and Zhang X. , 2012: Numerical investigations of the fall rate of a sea-monitoring probe. Ocean Eng., 56, 2027, doi:10.1016/j.oceaneng.2012.08.002.

    • Search Google Scholar
    • Export Citation
  • Xiao, H., , Liu C. , , and Tao J. , 2006: Numerical simulation and experiments of a probe descending in the sea. Ocean Eng., 33, 13431353, doi:10.1016/j.oceaneng.2005.10.001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 33 15
PDF Downloads 14 14 9

Early Dynamics of Deep Blue XBT Probes

View More View Less
  • 1 National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
© Get Permissions
Restricted access

Abstract

Expendable bathythermographs (XBTs) are probes widely used to monitor global ocean heat content, variability of ocean currents, and meridional heat transports. In the XBT temperature profile, the depth is estimated from the time of descent in the water using a fall-rate equation. There are two main errors in these profiles: temperature and depth errors. The reduction of error in the estimates of the depth allows a corresponding reduction in the errors in the computations in which XBTs are used. Two experiments were carried out to study the effect of the deployment height on the depth estimates of Deep Blue XBT probes. During these experiments, XBTs were deployed from different heights. The motion of the probes after entering the water was analyzed to determine the position and the velocity of the probes as a function of time, which was compared to that obtained using the Hanawa et al. fall-rate equation. Results showed a difference or offset between the experimentally observed depths and those derived from Hanawa et al. This offset was found to be linked to the deployment height. To eliminate the offset in the fall-rate equation for XBTs deployed from different heights, a methodology is proposed here based on the initial velocities of the probes in the water (or deployment height). Results indicate that the depth estimates in the profiles need to be corrected for an offset, which in addition to having a launch height dependence is time dependent during the first 1.5 s of descent of the probe in the water, and constant after that.

Corresponding author address: Francis Bringas, National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: francis.bringas@noaa.gov

Abstract

Expendable bathythermographs (XBTs) are probes widely used to monitor global ocean heat content, variability of ocean currents, and meridional heat transports. In the XBT temperature profile, the depth is estimated from the time of descent in the water using a fall-rate equation. There are two main errors in these profiles: temperature and depth errors. The reduction of error in the estimates of the depth allows a corresponding reduction in the errors in the computations in which XBTs are used. Two experiments were carried out to study the effect of the deployment height on the depth estimates of Deep Blue XBT probes. During these experiments, XBTs were deployed from different heights. The motion of the probes after entering the water was analyzed to determine the position and the velocity of the probes as a function of time, which was compared to that obtained using the Hanawa et al. fall-rate equation. Results showed a difference or offset between the experimentally observed depths and those derived from Hanawa et al. This offset was found to be linked to the deployment height. To eliminate the offset in the fall-rate equation for XBTs deployed from different heights, a methodology is proposed here based on the initial velocities of the probes in the water (or deployment height). Results indicate that the depth estimates in the profiles need to be corrected for an offset, which in addition to having a launch height dependence is time dependent during the first 1.5 s of descent of the probe in the water, and constant after that.

Corresponding author address: Francis Bringas, National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: francis.bringas@noaa.gov
Save