• Aanderaa Data Instruments, 2009: Operating manual: Oxygen optode 4330, 4835. Tech. Doc. 269, 71 pp.

  • Bittig, H. C., , and Körtzinger A. , 2015: Tackling oxygen optode drift: Near-surface and in-air oxygen optode measurements on a float provide an accurate in situ reference. J. Atmos. Oceanic Technol., 32, 15361543, doi:10.1175/JTECH-D-14-00162.1.

    • Search Google Scholar
    • Export Citation
  • Bittig, H. C., , Fiedler B. , , Steinhoff T. , , and Körtzinger A. , 2012: A novel electrochemical calibration setup for oxygen sensors and its use for the stability assessment of Aanderaa optodes. Limnol. Oceanogr. Methods, 10, 921933, doi:10.4319/lom.2012.10.921.

    • Search Google Scholar
    • Export Citation
  • Bittig, H. C., , Fiedler B. , , Scholz R. , , Krahmann G. , , and Körtzinger A. , 2014: Time response of oxygen optodes on profiling platforms and its dependence on flow speed and temperature. Limnol. Oceanogr. Methods, 12, 617636, doi:10.4319/lom.2014.12.617.

    • Search Google Scholar
    • Export Citation
  • Carey, F. G., , and Gibson Q. H. , 1976: The activity of dissolved oxygen at 1000 atm hydrostatic pressure. Deep-Sea Res. Oceanogr. Abstr., 23, 12151216, doi:10.1016/0011-7471(76)90898-6.

    • Search Google Scholar
    • Export Citation
  • Enns, T., , Scholander P. F. , , and Bradstreet E. D. , 1965: Effect of hydrostatic pressure on gases dissolved in water. J. Phys. Chem., 69, 389391, doi:10.1021/j100886a005.

    • Search Google Scholar
    • Export Citation
  • Fennel, K., , Cetinic I. , , D’Asaro E. , , Lee C. , , and Perry M. J. , 2011: Autonomous data describe North Atlantic spring bloom. Eos, Trans. Amer. Geophys. Union, 92, 465466, doi:10.1029/2011EO500002.

    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., , and Gordon L. I. , 1992: Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr., 37, 13071312, doi:10.4319/lo.1992.37.6.1307.

    • Search Google Scholar
    • Export Citation
  • Glueckauf, E., 1951: The composition of atmospheric air. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 3–12.

  • Johnson, K. S., and Coauthors, 2009: Observing biogeochemical cycles at global scales with profiling floats and gliders: Prospects for a global array. Oceanography, 22, 216225, doi:10.5670/oceanog.2009.81.

    • Search Google Scholar
    • Export Citation
  • Johnson, K. S., , Riser S. C. , , and Karl D. M. , 2010: Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature, 465, 10621065, doi:10.1038/nature09170.

    • Search Google Scholar
    • Export Citation
  • Jordan, S. M., , and Koros W. J. , 1990: Permeability of pure and mixed gases in silicone rubber at elevated pressures. J. Polym. Sci., 28B, 795809, doi:10.1002/polb.1990.090280602.

    • Search Google Scholar
    • Export Citation
  • Kamiya, Y., , Naito Y. , , Hirose T. , , and Mizoguchi K. , 1990: Sorption and partial molar volume of gases in poly (dimethyl siloxane). J. Polym. Sci., 28B, 12971308, doi:10.1002/polb.1990.090280808.

    • Search Google Scholar
    • Export Citation
  • Kamiya, Y., , Naito Y. , , Terada K. , , Mizoguchi K. , , and Tsuboi A. , 2000: Volumetric properties and interaction parameters of dissolved gases in poly(dimethylsiloxane) and polyethylene. Macromolecules, 33, 31113119, doi:10.1021/ma991536b.

    • Search Google Scholar
    • Export Citation
  • Lakowicz, J. R., Ed., 2006: Principles of Fluorescence Spectroscopy. 3rd ed. Springer, 954 pp., doi:10.1007/978-0-387-46312-4.

  • Ludwig, H., , and Macdonald A. G. , 2005: The significance of the activity of dissolved oxygen, and other gases, enhanced by high hydrostatic pressure. Comp. Biochem. Physiol., 140A, 387395, doi:10.1016/j.cbpb.2005.02.001.

    • Search Google Scholar
    • Export Citation
  • McNeil, C. L., , and D’Asaro E. A. , 2014: A calibration equation for oxygen optodes based on physical properties of the sensing foil. Limnol. Oceanogr. Methods, 12, 139154, doi:10.4319/lom.2014.12.139.

    • Search Google Scholar
    • Export Citation
  • Rohardt, G., , Fahrbach E. , , and Wisotzki A. , 2011: Physical oceanography during POLARSTERN cruise ANT-XXVII/2. Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, doi:10.1594/PANGAEA.772244.

  • Sea-Bird Electronics, 2013: SBE63 optical dissolved oxygen sensor user’s manual. 46 pp.

  • Takeshita, Y., , Martz T. R. , , Johnson K. S. , , Plant J. N. , , Gilbert D. , , Riser S. C. , , Neill C. , , and Tilbrook B. , 2013: A climatology-based quality control procedure for profiling float oxygen data. J. Geophys. Res. Oceans, 118, 56405650, doi:10.1002/jgrc.20399.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. D., 1978: The effect of pressure upon the solubility of oxygen in water: Implications of the deviation from the ideal gas law upon measurements of fluorescence quenching. Arch. Biochem. Biophys., 191, 375384, doi:10.1016/0003-9861(78)90101-7.

    • Search Google Scholar
    • Export Citation
  • Tengberg, A., and Coauthors, 2006: Evaluation of a lifetime-based optode to measure oxygen in aquatic systems. Limnol. Oceanogr. Methods, 4, 717, doi:10.4319/lom.2006.4.7.

    • Search Google Scholar
    • Export Citation
  • Thierry, V., , Gilbert D. , , Kobayashi T. , , and Schmid C. , 2013: Processing Argo oxygen data at the DAC level, version 1.3. Argo Data Management, 20 pp. [Available online at http://www.argodatamgt.org/content/download/16300/106561/file/ARGO_oxygen_proposition_v1p3.pdf.]

  • Uchida, H., , Kawano T. , , Kaneko I. , , and Fukasawa M. , 2008: In situ calibration of optode-based oxygen sensors. J. Atmos. Oceanic Technol., 25, 22712281, doi:10.1175/2008JTECHO549.1.

    • Search Google Scholar
    • Export Citation
  • Uchida, H., , Johnson G. C. , , and McTaggart K. E. , 2010: CTD oxygen sensor calibration procedures. GO-SHIP repeat hydrography manual: A collection of expert reports and guidelines, E. M. Hood, C. L. Sabine, and B. M. Sloyan, Eds., IOCCP Rep. 14, ICPO Publication Series 134, 17 pp. [Available online at http://www.go-ship.org/HydroMan.html.]

  • Weiss, R. F., , and Price B. A. , 1980: Nitrous oxide solubility in water and seawater. Mar. Chem., 8, 347359, doi:10.1016/0304-4203(80)90024-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 59 59 24
PDF Downloads 34 34 12

Pressure Response of Aanderaa and Sea-Bird Oxygen Optodes

View More View Less
  • 1 Marine Biogeochemistry Department, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
  • 2 Marine Biogeochemistry Department, GEOMAR Helmholtz Centre for Ocean Research Kiel, and Kongsberg Maritime Contros GmbH, Kiel, Germany
  • 3 Marine Biogeochemistry Department, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
© Get Permissions
Restricted access

Abstract

This study investigated the effect of hydrostatic pressure of up to 6000 dbar on Aanderaa and Sea-Bird oxygen optodes both in the laboratory and in the field. The overall pressure response is a reduction in the O2 reading by 3%–4% per 1000 dbar, which is closely linear with pressure and increases with temperature. Closer inspection reveals two superimposed processes with an opposite effect: an O2-independent pressure response on the luminophore that increases optode O2 readings and an O2-dependent change in luminescence quenching that decreases optode O2 readings. The latter process dominates and is mainly due to a shift in the equilibrium between the sensing membrane and seawater under elevated pressures. If only the dominant O2-dependent process is considered, then the Aanderaa and Sea-Bird optodes differ in their pressure response. Compensation of the O2-independent process, however, yields a uniform O2 dependence for Aanderaa optodes with standard foil and fast-response foil as well as for Sea-Bird optodes. A new scheme to calculate optode O2 from raw data is proposed to account for the two processes. The overall uncertainty of the optode pressure correction amounts to 0.3% per 1000 dbar, which is mainly due to variability between the sensors.

Denotes Open Access content.

Corresponding author address: Henry C. Bittig, Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. E-mail: hbittig@geomar.de

Abstract

This study investigated the effect of hydrostatic pressure of up to 6000 dbar on Aanderaa and Sea-Bird oxygen optodes both in the laboratory and in the field. The overall pressure response is a reduction in the O2 reading by 3%–4% per 1000 dbar, which is closely linear with pressure and increases with temperature. Closer inspection reveals two superimposed processes with an opposite effect: an O2-independent pressure response on the luminophore that increases optode O2 readings and an O2-dependent change in luminescence quenching that decreases optode O2 readings. The latter process dominates and is mainly due to a shift in the equilibrium between the sensing membrane and seawater under elevated pressures. If only the dominant O2-dependent process is considered, then the Aanderaa and Sea-Bird optodes differ in their pressure response. Compensation of the O2-independent process, however, yields a uniform O2 dependence for Aanderaa optodes with standard foil and fast-response foil as well as for Sea-Bird optodes. A new scheme to calculate optode O2 from raw data is proposed to account for the two processes. The overall uncertainty of the optode pressure correction amounts to 0.3% per 1000 dbar, which is mainly due to variability between the sensors.

Denotes Open Access content.

Corresponding author address: Henry C. Bittig, Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. E-mail: hbittig@geomar.de
Save