Blending Surface Currents from HF Radar Observations and Numerical Modeling: Tidal Hindcasts and Forecasts

E. V. Stanev Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany

Search for other papers by E. V. Stanev in
Current site
Google Scholar
PubMed
Close
,
F. Ziemer Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany

Search for other papers by F. Ziemer in
Current site
Google Scholar
PubMed
Close
,
J. Schulz-Stellenfleth Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany

Search for other papers by J. Schulz-Stellenfleth in
Current site
Google Scholar
PubMed
Close
,
J. Seemann Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany

Search for other papers by J. Seemann in
Current site
Google Scholar
PubMed
Close
,
J. Staneva Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany

Search for other papers by J. Staneva in
Current site
Google Scholar
PubMed
Close
, and
K.-W. Gurgel Institute of Oceanography, University of Hamburg, Germany

Search for other papers by K.-W. Gurgel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An observation network operating three Wellen Radars (WERAs) in the German Bight, which are part of the Coastal Observing System for Northern and Arctic Seas (COSYNA), is presented in detail. Major consideration is given to expanding the patchy observations over the entire German Bight on a 1-km grid and producing state estimates at intratidal scales, and 6- and 12-h forecasts. This was achieved with the help of the proposed spatiotemporal optimal interpolation (STOI) method, which efficiently uses observations and simulations from a free model run within an analysis window of one or two tidal cycles. In this way the method maximizes the use of available observations and can be considered as a step toward the “best surface current estimate.” The performance of the analysis was investigated based on the achieved reduction of the misfit between model and observations. The complex dynamics of the study domain was illustrated based on the spatial and temporal changes of tidal ellipses for the M2 and M4 constituents from HF radar observations. It was demonstrated that blending observations and numerical modeling facilitates physical interpretation of processes such as the nonlinear distortion of the Kelvin wave in the coastal zone and in particular in front of the Elbe and Weser estuaries. Comparisons with in situ data acquired outside the area covered by the HF radar demonstrated that the analysis method is able to propagate the HF radar information to larger spatial scales.

Corresponding author address: Emil V. Stanev, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany. E-mail: emil.stanev@hzg.de

Abstract

An observation network operating three Wellen Radars (WERAs) in the German Bight, which are part of the Coastal Observing System for Northern and Arctic Seas (COSYNA), is presented in detail. Major consideration is given to expanding the patchy observations over the entire German Bight on a 1-km grid and producing state estimates at intratidal scales, and 6- and 12-h forecasts. This was achieved with the help of the proposed spatiotemporal optimal interpolation (STOI) method, which efficiently uses observations and simulations from a free model run within an analysis window of one or two tidal cycles. In this way the method maximizes the use of available observations and can be considered as a step toward the “best surface current estimate.” The performance of the analysis was investigated based on the achieved reduction of the misfit between model and observations. The complex dynamics of the study domain was illustrated based on the spatial and temporal changes of tidal ellipses for the M2 and M4 constituents from HF radar observations. It was demonstrated that blending observations and numerical modeling facilitates physical interpretation of processes such as the nonlinear distortion of the Kelvin wave in the coastal zone and in particular in front of the Elbe and Weser estuaries. Comparisons with in situ data acquired outside the area covered by the HF radar demonstrated that the analysis method is able to propagate the HF radar information to larger spatial scales.

Corresponding author address: Emil V. Stanev, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany. E-mail: emil.stanev@hzg.de
Save
  • Backhaus, J., 1980: Simulation von Bewegungsvorgängen in der Deutschen Bucht. Dtsch. Hydrogr. Z., 15, 756.

  • Barrick, D. E., 1978: HF radio oceanography—A review. Bound.-Layer Meteor., 13, 2343, doi:10.1007/BF00913860.

  • Barrick, D. E., 2008: 30 years of CMTC and CODAR. IEEE/OES 9th Working Conference on Current Measurement Technology, IEEE, 131136.

  • Barth, A., Alvera-Azcárate A. , and Weisberg R. , 2008: Assimilation of high-frequency radar currents in a nested model of the West Florida Shelf. J. Geophys. Res., 113, C08033, doi:10.1029/2007JC004585.

    • Search Google Scholar
    • Export Citation
  • Barth, A., Alvera-Azcárate A. , Gurgel K.-W. , Staneva J. , Port A. , Beckers J.-M. , and Stanev E. , 2010: Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of high-frequency radar surface currents—Application to the German Bight. Ocean Sci., 6, 161178, doi:10.5194/os-6-161-2010.

    • Search Google Scholar
    • Export Citation
  • Barth, A., Alvera-Azcárate A. , Beckers J.-M. , Staneva J. , Stanev E. V. , and Schulz-Stellenfleth J. , 2011: Correcting surface winds by assimilating high-frequency radar surface currents in the German Bight. Ocean Dyn., 61, 599610, doi:10.1007/s10236-010-0369-0.

    • Search Google Scholar
    • Export Citation
  • Bennet, A. F., 2002: Inverse Modelling of the Ocean and Atmosphere.Cambridge University Press, 260 pp.

  • Bouttier, F., and Courtier P. , 1999: Data assimilation concepts and methods. Meteorological Training Course Lecture Series, ECMWF, 59 pp.

  • Breivik, O., and Sætra O. , 2001: Real time assimilation of HF radar currents into a coastal ocean model. J. Mar. Syst., 28, 161182, doi:10.1016/S0924-7963(01)00002-1.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., and Bolding K. , 2002: GETM: A general estuarine transport model. European Commission Joint Research Centre Tech. Rep. EUR 20253 EN, 157 pp.

  • Carbajal, N., and Pohlmann T. , 2004: Comparison between measured and calculated tidal ellipses in the German Bight. Ocean Dyn., 54, 520530, doi:10.1007/s10236-004-0096-5.

    • Search Google Scholar
    • Export Citation
  • Davies, A., and Furnes G. , 1980: Observed and computed M2 tidal currents in the North Sea. J. Phys. Oceanogr., 10, 237257, doi:10.1175/1520-0485(1980)010<0237:OACMTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Egbert, G., and Erofeeva S. , 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Filter.Springer, 279 pp.

  • Flather, R., 1976: A tidal model of the north-west European continental shelf. Mem. Soc. Roy. Sci. Lige Ser. 6,10, 141–164.

  • Frolov, S., Paduan J. , Cook M. , and Bellingham J. , 2012: Improved statistical prediction of surface currents based on historic HF-radar observations. Ocean Dyn., 62, 11111122, doi:10.1007/s10236-012-0553-5.

    • Search Google Scholar
    • Export Citation
  • Frost, J. R., and Stone L. D. , 2001: Review of search theory: Advances and applications to search and rescue decision support. U.S. Coast Guard Research and Development Center Rep. CG-D-15-01, 127 pp.

  • Gandin, L., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • Glenn, S., and Schofield O. , 2009: Growing a distributed ocean observatory: Our view from the cool room. Oceanography, 22, 128145, doi:10.5670/oceanog.2009.44.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, G., and Blumberg A. F. , 2012: Assimilation of HF radar-derived surface currents on tidal-timescales. J. Oper. Oceanogr., 5, 7587.

    • Search Google Scholar
    • Export Citation
  • Gurgel, K.-W., 1994: Shipborne measurement of surface current fields by HF radar. L’Onde Electr., 74, 5459.

  • Gurgel, K.-W., and Schlick T. , 2008: Land-based over-the-horizon radar techniques for monitoring the north-east Atlantic coastal zone. Remote Sensing of the European Seas, V. Barale, Ed., Springer, 447–460.

  • Gurgel, K.-W., and Schlick T. , 2009: Remarks on signal processing in HF radars using FMCW modulation. Proceedings: International Radar Symposium; IRS 2009, H. Rohling, Ed., Deutsche Gesellschaft für Ortung und Navigation, 63–67.

  • Gurgel, K.-W., Antonischki G. , Essen H.-H. , and Schlick T. , 1999a: Wellen Radar (WERA): A new ground-wave based HF radar for ocean remote sensing. Coastal Eng., 37, 219234, doi:10.1016/S0378-3839(99)00027-7.

    • Search Google Scholar
    • Export Citation
  • Gurgel, K.-W., Essen H.-H. , and Kingsley S. P. , 1999b: HF radars: Physical limitations and recent developments. Coastal Eng., 37, 201218, doi:10.1016/S0378-3839(99)00026-5.

    • Search Google Scholar
    • Export Citation
  • Hackett, B., Breivik A. , and Wettre C. , 2006: Forecasting the drift of objects and substances in the oceans. Ocean Weather Forecasting: An Integrated View of Oceanography, E. P. Chassignet and J. Verron, Eds., Springer, 507–524.

  • Harlan, J., Terrill E. , Hazard L. , Keen C. , Barrick D. , Whelan C. , Howden S. , and Kohut J. , 2010: The Integrated Ocean Observing System high-frequency radar network: Status and local, regional, and national applications. Mar. Technol. Soc. J., 44, 122132, doi:10.4031/MTSJ.44.6.6.

    • Search Google Scholar
    • Export Citation
  • Hendershott, M. C., and Speranza A. , 1971: Co-oscillating tide in long, narrow bays: The Taylor problem revisited. Deep-Sea Res. Oceanogr. Abstr., 18, 959980, doi:10.1016/0011-7471(71)90002-7.

    • Search Google Scholar
    • Export Citation
  • Hunt, B., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. Tellus, 56A, 273277, doi:10.1111/j.1600-0870.2004.00066.x.

    • Search Google Scholar
    • Export Citation
  • Ivanov, L., and Melnichenko O. , 2005: Determination of mesoscale surface currents in shallow-water regions according to the data of high-frequency radar measurements. Phys. Oceanogr., 15, 92104, doi:10.1007/s11110-005-0033-2.

    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., Terrill E. J. , and Cornuelle B. D. , 2007: Objectively mapping HF radar-derived surface current data using measured and idealized data covariance matrices. J. Geophys. Res., 112, C06021, doi:10.1029/2006JC003756.

    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., Terrill E. J. , and Cornuelle B. D. , 2008: Mapping surface currents from HF radar radial velocity measurements using optimal interpolation. J. Geophys. Res., 113, C10023, doi:10.1029/2007JC004244.

    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., Cornulelle B. D. , and Terril E. J. , 2009: Anisotropic response of surface currents to the wind in a coastal region. J. Phys. Oceanogr., 39, 1512–1533, doi:10.1175/2009JPO4013.1.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A., Egbert G. , Allen J. , Miller R. , Erofeeva S. , and Kosro P. , 2003: The M2 internal tide off Oregon: Inferences from data assimilation. J. Phys. Oceanogr., 33, 17331757, doi:10.1175/2397.1.

    • Search Google Scholar
    • Export Citation
  • Lewis, J., Shulman I. , and Blumberg A. , 1998: Assimilation of Doppler radar current data into numerical ocean models. Cont. Shelf Res., 18, 541559, doi:10.1016/S0278-4343(98)00006-5.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Chao Y. , McWilliams J. , and Ide K. , 2008: A three-dimensional variational data assimilation scheme for the Regional Ocean Modeling System. J. Atmos. Oceanic Technol., 25, 20742090, doi:10.1175/2008JTECHO594.1.

    • Search Google Scholar
    • Export Citation
  • Maier-Reimer, E., 1977: Residual circulation in the North Sea due to the M2-tide and mean annual wind stress. Dtsch. Hydrogr. Z., 30, 6980, doi:10.1007/BF02227045.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., Arango H. G. , Broquet G. , Powell B. S. , Weaver A. T. , and Zavala-Garay J. , 2011: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part I—System overview and formulation. Prog. Oceanogr., 91, 3449, doi:10.1016/j.pocean.2011.05.004.

    • Search Google Scholar
    • Export Citation
  • Oke, P., and Sakov P. , 2008: Representation error of oceanic observations for data assimilation. J. Atmos. Oceanic Technol., 25, 10041017, doi:10.1175/2007JTECHO558.1.

    • Search Google Scholar
    • Export Citation
  • Oke, P., Allen J. , Miller R. , Egbert G. , and Kosro P. , 2002: Assimilation of surface velocity data into a primitive equation coastal ocean model. J. Geophys. Res., 107, 3122, doi:10.1029/2000JC000511.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and Rosenfeld L. K. , 1996: Remotely sensed surface currents in Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application Radar). J. Geophys. Res., 101, 20 66920 686, doi:10.1029/96JC01663.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and Shulman I. , 2004: HF radar data assimilation in the Monterey Bay area. J. Geophys. Res.,109, C07S09, doi:10.1029/2003JC001949.

  • Port, A., Gurgel K.-W. , Staneva J. , Schulz-Stellenfleth J. , and Stanev E. , 2011: Tidal and wind-driven surface currents in the German Bight: HFR observations versus model simulations. Ocean Dyn., 61, 1567–1585, doi:10.1007/s10236-011-0412-9.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R., 1988: Principal Component Analyses in Meteorology and Oceanography.Developments in Atmospheric Sciences, Vol. 17, Elsevier, 444 pp.

  • Proctor, R., and Howarth M. , 2008: Coastal observatories and operational oceanography: A European perspective. Mar. Technol. Soc. J., 42, 1013, doi:10.4031/002533208786842534.

    • Search Google Scholar
    • Export Citation
  • Rozier, D., Birol F. , Cosme E. , Brasseur P. , Brankart J. , and Verron J. , 2007: A reduced-order Kalman filter for data assimilation in physical oceanography. SIAM Rev., 49, 449465, doi:10.1137/050635717.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., Evensen G. , and Bertino L. , 2010: Asynchronous data assimilation with the EnKF. Tellus, 62A, 2429, doi:10.1111/j.1600-0870.2009.00417.x.

    • Search Google Scholar
    • Export Citation
  • Schulz-Stellenfleth, J., and Stanev E. V. , 2010: Statistical assessment of ocean observing networks: A study of water level measurements in the German Bight. Ocean Modell., 33, 270282, doi:10.1016/j.ocemod.2010.03.001.

    • Search Google Scholar
    • Export Citation
  • Scott, R., Allen J. , Egbert G. , and Miller R. , 2000: Assimilation of surface current measurements in a coastal ocean model. J. Phys. Oceanogr., 30, 23592378, doi:10.1175/1520-0485(2000)030<2359:AOSCMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sendner, H., 1952: Ein Verfahren zur Berechnung von Gezeitenstrom- und Gefällsellipsen. Dtsch. Hydrogr. Z., 5, 199205, doi:10.1007/BF02020305.

    • Search Google Scholar
    • Export Citation
  • Sentchev, A., Yaremchuk M. , and Lyard F. , 2006: Residual circulation in the English Channel as a dynamically consistent synthesis of shore-based observations of sea level and currents. Cont. Shelf Res., 26, 18841904, doi:10.1016/j.csr.2006.06.006.

    • Search Google Scholar
    • Export Citation
  • Stanev, E., Schulz-Stellenfleth J. , Staneva J. , Grayek S. , Seemann J. , and Petersen W. , 2011: Coastal observing and forecasting system for the German Bight—Estimates of hydrophysical states. Ocean Sci., 7, 569–583, doi:10.5194/os-7-569-2011.

    • Search Google Scholar
    • Export Citation
  • Stanev, E., Al-Nadhairi R. , Staneva J. , Schulz-Stellenfleth J. , and Valle-Levinson A. , 2014: Tidal wave transformations in the German Bight. Ocean Dyn., 64, 951968, doi:10.1007/s10236-014-0733-6.

    • Search Google Scholar
    • Export Citation
  • Staneva, J., Stanev E. V. , Wolff J.-O. , Badewien T. H. , Reuter R. , Flemming B. , Bartholomä A. , and K. Bolding, 2009: Hydrodynamics and sediment dynamics in the German Bight. A focus on observations and numerical modeling in the East Frisian Wadden Sea. Cont. Shelf Res., 29, 302319, doi:10.1016/j.csr.2008.01.006.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. H., and Joy J. W. , 1974: HF radio measurements of surface currents. Deep-Sea Res. Oceanogr. Abstr., 21, 10391049, doi:10.1016/0011-7471(74)90066-7.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1922: Tidal oscillations in gulfs and rectangular basins. Proc. London Math. Soc., S2-20, 148181, doi:10.1112/plms/s2-20.1.148.

    • Search Google Scholar
    • Export Citation
  • Teague, S. S., Vesecky Z. R. , and Hallock Z. R. , 2001: A comparison of multifrequency HF radar and ADCP measurements of near-surface currents during COPE-3. IEEE J. Oceanic Eng., 26, 399404, doi:10.1109/48.946513.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P., 2001: An ensemble smoother with error estimates. Mon. Wea. Rev., 129, 709728, doi:10.1175/1520-0493(2001)129<0709:AESWEE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wahle, K., and Stanev E. , 2011: Consistency and complementarity of different coastal ocean observations: A neural network-based analysis for the German Bight. Geophys. Res. Lett., 38, L10603, doi:10.1029/2011GL047070.

    • Search Google Scholar
    • Export Citation
  • Wilkin, J., Arango H. G. , Haidvogel D. B. , Lichtenwalner C. S. , Glenn S. M. , and Hedström K. S. , 2005: A regional ocean modeling system for the Long-term Ecosystem Observatory. J. Geophys. Res.,110, C06S91, doi:10.1029/2003JC002218.

  • Willis, Z., 2012: Towards a global HF radar network. J. Oper. Oceanography, 5, 2.

  • Yaremchuk, M., and Sentchev A. , 2009: Mapping radar-derived sea surface currents with a variational method. Cont. Shelf Res., 29, 17111722, doi:10.1016/j.csr.2009.05.016.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., Wilkin J. , and Arango H. , 2010a: Towards an integrated observation and modeling system in the New York Bight using variational methods. Part I: 4DVAR data assimilation. Ocean Modell., 35, 119133, doi:10.1016/j.ocemod.2010.08.003.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., Wilkin J. , and Levin J. , 2010b: Towards an integrated observation and modeling system in the New York Bight using variational methods. Part II: Repressenter-based observing strategy evaluation. Ocean Modell., 35, 1013, doi:10.1016/j.ocemod.2010.06.006.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 849 219 7
PDF Downloads 433 142 7