Optimization of the High-Frequency Radar Sites in the Bering Strait Region

Gleb Panteleev International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, and National Research Tomsk Polytechnic University, Tomsk, Russia

Search for other papers by Gleb Panteleev in
Current site
Google Scholar
PubMed
Close
,
Max Yaremchuk Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Max Yaremchuk in
Current site
Google Scholar
PubMed
Close
,
Jacob Stroh University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Jacob Stroh in
Current site
Google Scholar
PubMed
Close
,
Pamela Posey Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Pamela Posey in
Current site
Google Scholar
PubMed
Close
,
David Hebert Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by David Hebert in
Current site
Google Scholar
PubMed
Close
, and
Dmitri A. Nechaev University of Southern Mississippi, Hattiesburg, Mississippi

Search for other papers by Dmitri A. Nechaev in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Monitoring surface currents by coastal high-frequency radars (HFRs) is a cost-effective observational technique with good prospects for further development. An important issue in improving the efficiency of HFR systems is the optimization of radar positions on the coastline. Besides being constrained by environmental and logistic factors, such optimization has to account for prior knowledge of local circulation and the target quantities (such as transports through certain key sections) with respect to which the radar positions are to be optimized.

In the proposed methodology, prior information of the regional circulation is specified by the solution of the 4D variational assimilation problem, where the available climatological data in the Bering Strait (BS) region are synthesized with dynamical constraints of a numerical model. The optimal HFR placement problem is solved by maximizing the reduction of a posteriori error in the mass, heat, and salt (MHS) transports through the target sections in the region. It is shown that the MHS transports into the Arctic and their redistribution within the Chukchi Sea are best monitored by placing HFRs at Cape Prince of Wales and on Little Diomede Island. Another equally efficient configuration involves placement of the second radar at Sinuk (western Alaska) in place of Diomede. Computations show that 1) optimization of the HFR deployment yields a significant (1.3–3 times) reduction of the transport errors compared to nonoptimal positioning of the radars and 2) error reduction provided by two HFRs is an order of magnitude better than the one obtained from three moorings permanently maintained in the region for the last 5 yr. This result shows a significant advantage of BS monitoring by HFRs compared to the more traditional technique of in situ moored observations. The obtained results are validated by an extensive set of observing system simulation experiments.

Corresponding author address: Gleb Panteleev, University of Alaska Fairbanks, P.O. Box 757340, Fairbanks, AK 99775-7340. E-mail: gleb@iarc.uaf.edu

Abstract

Monitoring surface currents by coastal high-frequency radars (HFRs) is a cost-effective observational technique with good prospects for further development. An important issue in improving the efficiency of HFR systems is the optimization of radar positions on the coastline. Besides being constrained by environmental and logistic factors, such optimization has to account for prior knowledge of local circulation and the target quantities (such as transports through certain key sections) with respect to which the radar positions are to be optimized.

In the proposed methodology, prior information of the regional circulation is specified by the solution of the 4D variational assimilation problem, where the available climatological data in the Bering Strait (BS) region are synthesized with dynamical constraints of a numerical model. The optimal HFR placement problem is solved by maximizing the reduction of a posteriori error in the mass, heat, and salt (MHS) transports through the target sections in the region. It is shown that the MHS transports into the Arctic and their redistribution within the Chukchi Sea are best monitored by placing HFRs at Cape Prince of Wales and on Little Diomede Island. Another equally efficient configuration involves placement of the second radar at Sinuk (western Alaska) in place of Diomede. Computations show that 1) optimization of the HFR deployment yields a significant (1.3–3 times) reduction of the transport errors compared to nonoptimal positioning of the radars and 2) error reduction provided by two HFRs is an order of magnitude better than the one obtained from three moorings permanently maintained in the region for the last 5 yr. This result shows a significant advantage of BS monitoring by HFRs compared to the more traditional technique of in situ moored observations. The obtained results are validated by an extensive set of observing system simulation experiments.

Corresponding author address: Gleb Panteleev, University of Alaska Fairbanks, P.O. Box 757340, Fairbanks, AK 99775-7340. E-mail: gleb@iarc.uaf.edu
Save
  • Abascal, A. J., Castanedo S. , Fernández V. , and Medina R. , 2012: Backtracking drifting objects using surface currents from high-frequency radar. Ocean Dyn., 62, 1073–1089, doi:10.1007/s10236-012-0546-4.

    • Search Google Scholar
    • Export Citation
  • Allard, R., and Coauthors, 2012: The Arctic Cap Nowcast Forecast System. Geophysical Research Abstracts, Vol. 14, Abstract EGU2012-2160. [Available online at http://meetingorganizer.copernicus.org/EGU2012/EGU2012-2160.pdf.]

    • Search Google Scholar
    • Export Citation
  • Alvarez, A., and Mourre B. , 2012: Optimum sampling designs for a glider-mooring observing network. J. Atmos. Oceanic Technol., 29, 601612, doi:10.1175/JTECH-D-11-00105.1.

    • Search Google Scholar
    • Export Citation
  • Baker, N., and Daley R. , 2000: Observation and background adjoint sensitivity in the adaptive observation-targeting problem (2007). Quart. J. Roy. Meteor. Soc., 126, 14311454, doi:10.1002/qj.49712656511.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., Evans M. W. , and Weber B. L. , 1977: Ocean surface currents mapped by radar. Science, 198, 138144, doi:10.1126/science.198.4313.138.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., Fernandez V. , Ferrer M. , Whelan C. , and Breivik C. , 2012: A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network. Ocean Dyn., 62, 725–740, doi:10.1007/s10236-012-0521-0.

    • Search Google Scholar
    • Export Citation
  • Clement, J. L., Maslowski W. , Cooper L. W. , Grebmeier J. M. , and Walczowski W. , 2005: Ocean circulation and exchanges through the northern Bering Sea—1979–2001 model results. Deep-Sea Res. II, 52, 3509–3540, doi:10.1016/j.dsr2.2005.09.010.

    • Search Google Scholar
    • Export Citation
  • Coachman, L. K., 1993: On the flow field in the Chirikov Basin. Cont. Shelf Res., 13, 481508, doi:10.1016/0278-4343(93)90092-C.

  • Coachman, L. K., and Aagaard K. , 1966: On the water exchange through the Bering Strait. Limnol. Oceanogr., 11, 4459, doi:10.4319/lo.1966.11.1.0044.

    • Search Google Scholar
    • Export Citation
  • Coachman, L. K., and Aagaard K. , 1988: Transports through the Bering Strait: Annual and interannual variability. J. Geophys. Res., 93, 15 53515 539, doi:10.1029/JC093iC12p15535.

    • Search Google Scholar
    • Export Citation
  • Coachman, L. K., Aagaard K. , and Trip R. B. , 1975: Bering Strait: The Regional Physical Oceanography. University of Washington Press, 172 pp.

  • Emery, B. M., Washburn L. , and Harlan J. A. , 2004: Evaluating radial current measurements from CODAR high-frequency radars with moored current meters. J. Atmos. Oceanic Technol., 21, 12591271, doi:10.1175/1520-0426(2004)021<1259:ERCMFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harlan, J., Terrill E. , Hazard L. , Keen C. , Barrick D. , Whelan C. , Howden S. , and Kohut J. , 2010: The Integrated Ocean Observing System high-frequency radar network: Status and local, regional, and national applications. Mar. Technol. Soc. J., 44, 122–132, doi:10.4031/MTSJ.44.6.6.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., and Stammer D. , 2004: Optimal observations for variational data assimilation. J. Phys. Oceanogr., 34, 529542, doi:10.1175/2513.1.

    • Search Google Scholar
    • Export Citation
  • Kohut, J. T., and Glenn S. M. , 2003: Improving HF radar surface current measurements with measured antenna beam patterns. J. Atmos. Oceanic Technol., 20,13031316, doi:10.1175/1520-0426(2003)020<1303:IHRSCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kohut, J. T., Roarty H. , Randall-Goodwin E. , Glenn S. , and Sage Lichtenwalner C. , 2012: Evaluation of two algorithms for a network of coastal HF radars in the Mid-Atlantic Bight. Ocean Dyn., 62, 953–968, doi:10.1007/s10236-012-0533-9.

    • Search Google Scholar
    • Export Citation
  • Ladd, C., and Bond N. A. , 2002: Evaluation of the NCEP/NCAR reanalysis in the NE Pacific and the Bering Sea. J. Geophys. Res., 107, 3158, doi:10.1029/2001JC001157.

    • Search Google Scholar
    • Export Citation
  • Laws, K., Paudaun J. D. , and Vesecky J. , 2010: Estimation and assessment of errors related to antenna pattern distortion in CODAR SeaSonde high-frequency radar ocean current measurements. J. Atmos. Oceanic Technol., 27, 1029–1043, doi:10.1175/2009JTECHO658.1.

    • Search Google Scholar
    • Export Citation
  • Lipa, B., 2003: HF radar current velocity uncertainties. Sea Technol., 44, 8194.

  • Lipa, B., and Barrick D. E. , 1983: Least-squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE. IEEE J. Oceanic Eng., 8, 226253, doi:10.1109/JOE.1983.1145578.

    • Search Google Scholar
    • Export Citation
  • Losch, M., and Heimbach P. , 2007: Adjoint sensitivity of an ocean general circulation model to bottom topography. J. Phys. Oceanogr., 37, 377393, doi:10.1175/JPO3017.1.

    • Search Google Scholar
    • Export Citation
  • Luchin, V., and Panteleev G. , 2014: Thermal regimes in the Chukchi Sea from 1941 to 2008. Deep-Sea Res., 109, 14–26, doi:10.1016/j.dsr2.2014.05.007.

    • Search Google Scholar
    • Export Citation
  • Madec, G., Delecluse P. , Imbard M. , and Lévy C. , 1998: OPA8.1: Ocean general circulation model. IPSL Reference Manual Notes du Pôle Modélisation 11, 91 pp.

  • Marotzke, J., Giering R. , Zhang K. O. , Stammer D. , Hill C. , and Lee T. , 1999: Construction of the adjoint MIT general circulation model and application to Atlantic heat transport sensitivity. J. Geophys. Res., 104, 29 52929 547, doi:10.1029/1999JC900236.

    • Search Google Scholar
    • Export Citation
  • Nechaev, D., Panteleev G. , and Yaremchuk M. , 2005: Reconstruction of the circulation in the limited region with open boundaries: Circulation in the Tsushima Strait. Okeanologiya, 45, 805828.

    • Search Google Scholar
    • Export Citation
  • Panteleev, G. G., and Semyonov E. V. , 1988: On the strategy of hydrological array measurements. Okeanologiya, 28, 10321034.

  • Panteleev, G. G., deYoung B. , Reiss C. , and Taggart C. , 2004: Passive tracer reconstruction as a least squares problem with a semi-Lagrangian constraint: An application to fish eggs and larvae. J. Mar. Res., 62, 787814, doi:10.1357/0022240042880846.

    • Search Google Scholar
    • Export Citation
  • Panteleev, G. G., Nechaev D. A. , and Ikeda M. , 2006a: Reconstruction of summer Barents Sea circulation from climatological data. Atmos.–Ocean, 44, 111132, doi:10.3137/ao.440201.

    • Search Google Scholar
    • Export Citation
  • Panteleev, G. G., Stabeno P. , Luchin V. A. , Nechaev D. , and Ikeda M. , 2006b: Summer transport estimates of the Kamchatka Current derived as a variational inverse of hydrophysical and surface drifter data. Geophys. Res. Lett., 33, L09609, doi:10.1029/2005GL024974.

    • Search Google Scholar
    • Export Citation
  • Panteleev, G. G., Proshutinsky A. , Kulakov M. , Nechaev D. A. , and Maslowski W. , 2007: Investigation of summer Kara Sea circulation employing a variational data assimilation technique. J. Geophys. Res., 112, C04S15, doi:10.1029/2006JC003728.

    • Search Google Scholar
    • Export Citation
  • Panteleev, G. G., Yaremchuk M. , and Nechaev D. A. , 2009: Optimization of mooring observations in the northern Bering Sea. Dyn. Atmos. Oceans, 48, 143154, doi:10.1016/j.dynatmoce.2008.11.004.

    • Search Google Scholar
    • Export Citation
  • Panteleev, G. G., Nechaev D. A. , Proshutinsky A. , Woodgate R. , and Zhang J. , 2010: Reconstruction and analysis of the Chukchi Sea circulation in 1990–1991. J. Geophys. Res., 115, C08023, doi:10.1029/2009JC005453.

    • Search Google Scholar
    • Export Citation
  • Posey, P., Metzger E. J. , Walcraft A. , Preller R. , Smetstad O. M. , and Phelps M. W. , 2010: Validation of the 1/12° Arctic Cap Nowcast Forecast System (ACNFS). Naval Research Laboratory Tech. Rep. NRL/MR/7320-10-9287, 55 pp.

  • Roach, A. T., Aagaard K. , Pease C. H. , Salo S. S. , Weingartner T. , Pavlov V. , and Kulakov M. , 1995: Direct measurements of transport and water properties through the Bering Strait. J. Geophys. Res., 100, 18 443, doi:10.1029/95JC01673.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2007: Circulation and water mass transformation in a model of the Chukchi Sea. J. Geophys. Res.,112, C05025, doi:10.1029/2005/JC003364.

  • Veneziani, V., Edwards A. C. , and Moore A. , 2009: A central California coastal ocean modeling study: 2. Adjoint sensitivities to local and remote forcing mechanisms. J. Geophys. Res., 114, C04020, doi:10.1029/2008JC004775.

    • Search Google Scholar
    • Export Citation
  • Watanabe, E., and Hasumi H. , 2009: Pacific water transport in the western Arctic Ocean simulated by an eddy-resolving coupled sea ice–ocean model. J. Phys. Oceanogr.,39, 2194–2211, doi:10.1175/2009JPO4010.1.

  • Weingartner, T. J., Danielson S. , Sasaki Y. , Pavlov V. , and Kulakov M. , 1999: The Siberian Coastal Current: A wind- and buoyancy-forced Arctic coastal current. J. Geophys. Res.,104, 29 697–29 713, doi:10.1029/1999JC900161.

  • Weingartner, T. J., Aagaard K. , Woodgate R. , Danielson S. , Sasaki Y. , and Cavalieri D. , 2005: Circulation in the north central Chukchi Sea shelf. Deep-Sea Res. II, 52, 31503174, doi:10.1016/j.dsr2.2005.10.015.

    • Search Google Scholar
    • Export Citation
  • Winsor, P., and Chapman D. C. , 2004: Pathways of Pacific water across the Chukchi Sea: A numerical model study. J. Geophys. Res., 109, C03002, doi:10.1029/2003JC001962.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., Aagaard K. , and Weingartner T. , 2005: Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophys. Res. Lett., 32, L04601, doi:10.1029/2004GL021880.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., Weingartner T. , and Lindsay R. , 2010: The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys. Res. Lett., 37, L01602, doi:10.1029/2009GL041621.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., Weingartner T. , and Lindsay R. , 2012: Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys. Res. Lett., 39, L24603, doi:10.1029/2012GL054092.

    • Search Google Scholar
    • Export Citation
  • Yoshikawa, Y., Masuda A. , Marubayashi K. , Ishibashi M. , and Okuno A. , 2006: On the accuracy of HF radar measurement in the Tsushima Strait. J. Geophys. Res.,111, C04009, doi:10.1029/2005JC003232.

  • Zhang, X., Cornuelle B. , and Roemmich D. , 2011: Adjoint sensitivity of the Niño-3 surface temperature to wind forcing. J. Climate, 24, 44804493, doi:10.1175/2011JCLI3917.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 53 5
PDF Downloads 124 40 4