Novel Tornado Detection Using an Adaptive Neuro-Fuzzy System with S-Band Polarimetric Weather Radar

Yadong Wang Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Yadong Wang in
Current site
Google Scholar
PubMed
Close
and
Tian-You Yu School of Electrical and Computer Engineering, and Advanced Radar Research Center, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Tian-You Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tornado debris signatures (TDS) exhibited in polarimetric measurements have the potential to facilitate tornado detection. The upgrade of the network of S-band Weather Surveillance Radar-1988 Doppler (WSR-88D) to dual polarization was completed recently. Therefore, it is timely to develop a tornado detection algorithm that capitalizes on TDS and integrates with other existing signatures observed in the velocity (shear signature) and Doppler spectrum (spectral signature) fields. In this work, the analysis indicates that TDS are not always present with shear and spectral signatures. A neuro-fuzzy tornado detection algorithm (NFTDA) using the Sugeno fuzzy inference system is developed to consider the strength of different tornado signatures that are characterized by operationally available data of differential reflectivity, cross-correlation coefficient, velocity difference, and spectrum width with the goal of reliable and robust detection. The performance is further optimized using a training procedure based on a neural network. The performance of NFTDA is evaluated using polarimetric WSR-88D data from 17 tornadoes with enhanced Fujita (EF) scale ratings ranging from EF-0 to EF-4 and distance from 16 to 133 km to the radar. NFTDA performs well with the probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) of 86%, 11%, and 78%, respectively. Moreover, a computationally efficient method is introduced to analyze the sensitivity of the tornado signatures. It is demonstrated that even though TDS play a less important role than the other two signatures, TDS can help improve the detection, especially during the later stage of a tornado, when the shear and spectral signatures become weaker.

Corresponding author address: Yadong Wang, CIMMS, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: yadong.wang@noaa.gov

Abstract

Tornado debris signatures (TDS) exhibited in polarimetric measurements have the potential to facilitate tornado detection. The upgrade of the network of S-band Weather Surveillance Radar-1988 Doppler (WSR-88D) to dual polarization was completed recently. Therefore, it is timely to develop a tornado detection algorithm that capitalizes on TDS and integrates with other existing signatures observed in the velocity (shear signature) and Doppler spectrum (spectral signature) fields. In this work, the analysis indicates that TDS are not always present with shear and spectral signatures. A neuro-fuzzy tornado detection algorithm (NFTDA) using the Sugeno fuzzy inference system is developed to consider the strength of different tornado signatures that are characterized by operationally available data of differential reflectivity, cross-correlation coefficient, velocity difference, and spectrum width with the goal of reliable and robust detection. The performance is further optimized using a training procedure based on a neural network. The performance of NFTDA is evaluated using polarimetric WSR-88D data from 17 tornadoes with enhanced Fujita (EF) scale ratings ranging from EF-0 to EF-4 and distance from 16 to 133 km to the radar. NFTDA performs well with the probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) of 86%, 11%, and 78%, respectively. Moreover, a computationally efficient method is introduced to analyze the sensitivity of the tornado signatures. It is demonstrated that even though TDS play a less important role than the other two signatures, TDS can help improve the detection, especially during the later stage of a tornado, when the shear and spectral signatures become weaker.

Corresponding author address: Yadong Wang, CIMMS, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: yadong.wang@noaa.gov
Save
  • Bluestein, H. B., French M. M. , Tanamachi L. R. , Frasier S. , Hardwick K. . Junyent F. , and Pazmany A. L. , 2007: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543, doi:10.1175/MWR3349.1.

    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., Kumjian M. R. , Palmer R. D. , Heinselman P. L. , and Ryzhkov A. V. , 2013: Tornado damage estimation using polarimetric radar. Wea. Forecasting, 28, 139158, doi:10.1175/WAF-D-11-00158.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and Lemon L. R. , 1976: Single Doppler radar vortex recognition. Part II: Tornadic vortex signatures. Preprints, 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 104–109.

  • Brown, R. A., Wood V. T. , and Sirmans D. , 2002: Improved tornado detection using simulated and actual WSR-88D data with enhanced resolution. J. Atmos. Oceanic Technol., 19, 17591771, doi:10.1175/1520-0426(2002)019<1759:ITDUSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chiu, S. L., 1996: Selecting input variables for fuzzy models. J. Intell. Fuzzy Syst., 4, 243256.

  • Edwards, R., LaDue J. G. , Ferree J. T. , Scharfenberg K. , Maier C. , and Coulbourne W. L. , 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, doi:10.1175/BAMS-D-11-00006.1.

    • Search Google Scholar
    • Export Citation
  • Gaweda, A., Zurada J. M. , and Setiono R. , 2001: Input selection in data-driven fuzzy modeling. The 10th IEEE International Conference on Fuzzy Systems: Meeting the Grand Challenge; Machines that Serve People, Vol. 3, IEEE, 1251–1254.

  • Jang, J.-S. R., 1993: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern., 23, 665685, doi:10.1109/21.256541.

    • Search Google Scholar
    • Export Citation
  • Jang, J.-S. R., 1996: Input selection for ANFIS learning. Proceedings of the Fifth IEEE International Conference on Fuzzy Systems: FUZZ-IEEE ‘96, Vol. 2, IEEE, 14931499.

  • Kumjian, M. R., and Ryzhkov A. V. , 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and Chandrasekar V. , 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, doi:10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, E. D., Vasiloff S. V. , Stumpf G. J. , Witt A. , Eilts M. D. , Johnson J. T. , and Thomas K. W. , 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Forecasting, 13, 352366, doi:10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., and Coauthors, 2011: Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891, doi:10.1175/2011BAMS3125.1.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., Ryzhkov A. V. , Zrnić D. S. , and Kim K.-E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Ross, T. J., 2004: Fuzzy Logic with Engineering Applications. 2nd ed. John Wiley, 628 pp.

  • Ryzhkov, A. V., Burgess D. W. , Zrnić D. S. , Smith T. , and Giangrande S. E. , 2002: Polarimetric analysis of a 3 May 1999 tornado. 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 14.2. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47348.htm.]

  • Ryzhkov, A. V., Schuur T. J. , Burgess D. W. , and Zrnić D. S. , 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, doi:10.1175/JAM2235.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., and Coauthors, 2012: Dual-polarization tornadic debris signatures part II: Comparisons and caveats. Electron. J. Oper. Meteor.,13, 138–150. [Available online at http://www.nwas.org/ej/pdf/2012-EJ10.pdf.]

  • Snyder, J. C., Bluestein H. B. , Venkatesh V. , and Frasier S. J. , 2013: Observations of polarimetric signatures in supercells by an X-band mobile Doppler radar. Mon. Wea. Rev., 141, 329, doi:10.1175/MWR-D-12-00068.1.

    • Search Google Scholar
    • Export Citation
  • Speheger, A. D., and Smith R. D. , 2006: On the imprecision of radar signature locations and storm path forecasts. Natl. Wea. Dig., 30, 310.

    • Search Google Scholar
    • Export Citation
  • Sugeno, M., 1985: Industrial Applications of Fuzzy Control. Elsevier Science, 278 pp.

  • Sugeno, M., and Yasukawa T. , 1993: A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst., 1, 731, doi:10.1109/TFUZZ.1993.390281.

    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and Curtis C. D. , 2007: Initial implementation of super-resolution data on the NEXRAD network. 23rd Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Antonio, TX, Amer. Meteor. Soc., 5B.10. [Available online at https://ams.confex.com/ams/87ANNUAL/techprogram/paper_116240.htm.]

  • Toth, M., Trapp R. J. , Wurman J. , and Kosiba K. A. , 2013: Comparison of mobile-radar measurements of tornado intensity to corresponding WSR-88D measurements. Wea. Forecasting, 28, 418426, doi:10.1175/WAF-D-12-00019.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Ellis S. M. , Oye R. , Zrnić D. S. , Ryzhkov A. V. , and Straka J. , 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Yu T.-Y. , Yeary M. , Shapiro A. , Nemati S. , Foster M. , Andra D. L. Jr., and Jain M. , 2008: Tornado detection using a neuro–fuzzy system to integrate shear and spectral signatures. J. Atmos. Oceanic Technol., 25, 11361148, doi:10.1175/2007JTECHA1022.1.

    • Search Google Scholar
    • Export Citation
  • Witt, A., Eilts M. D. , Stumpf G. J. , Mitchell E. D. , Johnson J. T. , and Thomas K. W. , 1998: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, doi:10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Kosiba K. , Robinson P. , and Marshall T. , 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, doi:10.1175/BAMS-D-13-00221.1.

    • Search Google Scholar
    • Export Citation
  • Yager, R. R., and Filev D. P. , 1994: Generation of fuzzy rules by mountain clustering. J. Intell. Fuzzy Syst., 2, 209219, doi:10.3233/IFS-1994-2301.

    • Search Google Scholar
    • Export Citation
  • Yeary, M., Nemati S. , Yu T.-Y. , and Wang Y. , 2007: Tornadic time-series detection using eigen analysis and a machine intelligence-based approach. IEEE Trans. Geosci. Remote Sens., 4, 335339, doi:10.1109/LGRS.2007.895677.

    • Search Google Scholar
    • Export Citation
  • Yu, T.-Y., Wang Y. , Shapiro A. , Yeary M. B. , Zrnić D. S. , and Doviak R. J. , 2007: Characterization of tornado spectral signatures using higher-order spectra. J. Atmos. Oceanic Technol., 24, 19972013, doi:10.1175/2007JTECHA934.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1975: Simulation of weatherlike Doppler spectra and signals. J. Appl. Meteor., 14, 619620, doi:10.1175/1520-0450(1975)014<0619:SOWDSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 266 98 7
PDF Downloads 202 67 5