Bias Adjustment of AVHRR SST and Its Impacts on Two SST Analyses

Boyin Huang NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Boyin Huang in
Current site
Google Scholar
PubMed
Close
,
Wanqiu Wang NOAA/Climate Prediction Center, College Park, Maryland

Search for other papers by Wanqiu Wang in
Current site
Google Scholar
PubMed
Close
,
Chunying Liu ERT, Inc., Laurel, Maryland

Search for other papers by Chunying Liu in
Current site
Google Scholar
PubMed
Close
,
Viva Banzon NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Viva Banzon in
Current site
Google Scholar
PubMed
Close
,
Huai-Min Zhang NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Huai-Min Zhang in
Current site
Google Scholar
PubMed
Close
, and
Jay Lawrimore NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Jay Lawrimore in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea surface temperature (SST) observations from satellite-based Advanced Very High Resolution Radiometer (AVHRR) instrument exhibit biases. Adjustments necessary for removing the AVHRR biases have been studied by progressive experiments. These experiments show that the biases are sensitive to various parameters, including the length of the input data window, the base-function empirical orthogonal teleconnections (EOTs), the ship–buoy SST adjustment, and a shift in grid system. The difference in bias adjustments due to these parameters can be as large as 0.3°–0.5°C in the tropical Pacific at the monthly time scale.

The AVHRR bias adjustments were designed differently in the daily optimum interpolation SST (DOISST) and the Extended Reconstructed SST datasets that ingest AVHRR SSTs (ERSSTsat). The different AVHRR bias adjustments result in the differences in SST datasets in DOISST and ERSSTsat. Comparisons show that the SST difference between these two datasets results largely from the difference in the AVHRR bias adjustments and little from SST analysis methods in the Niño-3.4 region, as well as in the global oceans. For example, the average difference of the Niño-3.4 SSTs between DOISST and ERSSTsat is approximately 0.12°C due to the bias adjustments and is about 0.01°C due to the analysis methods.

This study finds that the DOISST datasets can be improved by using the revised AVHRR bias adjustment of a wider input data window, updated EOTs, and a shifted grid system in DOISST. Improvements can also be made by including a ship–buoy SST adjustment, a zonal SST adjustment, or revised EOTs without damping in the high latitudes in ERSSTsat.

Corresponding author address: Boyin Huang, National Climatic Data Center, 151 Patton Avenue, Asheville, NC 28801. E-mail: boyin.huang@noaa.gov

Abstract

Sea surface temperature (SST) observations from satellite-based Advanced Very High Resolution Radiometer (AVHRR) instrument exhibit biases. Adjustments necessary for removing the AVHRR biases have been studied by progressive experiments. These experiments show that the biases are sensitive to various parameters, including the length of the input data window, the base-function empirical orthogonal teleconnections (EOTs), the ship–buoy SST adjustment, and a shift in grid system. The difference in bias adjustments due to these parameters can be as large as 0.3°–0.5°C in the tropical Pacific at the monthly time scale.

The AVHRR bias adjustments were designed differently in the daily optimum interpolation SST (DOISST) and the Extended Reconstructed SST datasets that ingest AVHRR SSTs (ERSSTsat). The different AVHRR bias adjustments result in the differences in SST datasets in DOISST and ERSSTsat. Comparisons show that the SST difference between these two datasets results largely from the difference in the AVHRR bias adjustments and little from SST analysis methods in the Niño-3.4 region, as well as in the global oceans. For example, the average difference of the Niño-3.4 SSTs between DOISST and ERSSTsat is approximately 0.12°C due to the bias adjustments and is about 0.01°C due to the analysis methods.

This study finds that the DOISST datasets can be improved by using the revised AVHRR bias adjustment of a wider input data window, updated EOTs, and a shifted grid system in DOISST. Improvements can also be made by including a ship–buoy SST adjustment, a zonal SST adjustment, or revised EOTs without damping in the high latitudes in ERSSTsat.

Corresponding author address: Boyin Huang, National Climatic Data Center, 151 Patton Avenue, Asheville, NC 28801. E-mail: boyin.huang@noaa.gov
Save
  • Bamston, A. G., Chelliah M. , and Goldenberg S. B. , 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific: Research note. Atmos.–Ocean, 35, 367383, doi:10.1080/07055900.1997.9649597.

    • Search Google Scholar
    • Export Citation
  • Casey, K. S., Brandon T. B. , Cornillon P. , and Evans R. , 2010: The past, present, and future of the AVHRR Pathfinder SST program. Oceanography from Space: Revisited, V. Barale, J. F. R. Gower, and L. Alberotanza, Eds., Springer, 273–287, doi:10.1007/978-90-481-8681-5_16.

  • Hirahara, S., Ishii M. , and Fukuda Y. , 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, doi:10.1175/JCLI-D-12-00837.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., L’Heureux M. , Lawrimore J. , Liu C. , Zhang H.-M. , Banzon V. , Hu Z.-Z. , and Kumar A. , 2013: Why did large differences arise in the sea-surface temperature datasets across the tropical Pacific during 2012? J. Atmos. Oceanic Technol., 30, 29442953, doi:10.1175/JTECH-D-13-00034.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, doi:10.1175/JCLI-D-14-00006.1, in press.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., Rayner N. A. , Smith R. O. , Parker D. E. , and Saunby M. , 2011: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, doi:10.1029/2010JD015220.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and Challenor P. G. , 2006: Towards estimating climatic trends in SST. Part II: Random errors. J. Atmos. Oceanic Technol., 23, 476486, doi:10.1175/JTECH1844.1.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and Kaplan A. , 2006: Towards estimating climatic trends in SST. Part II: Systematic biases. J. Atmos. Oceanic Technol., 23, 487500, doi:10.1175/JTECH1845.1.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., Woodruff S. D. , and Berry D. I. , 2007: Metadata from WMO Publication No. 47 and an assessment of Voluntary Observing Ship observation heights in ICOADS. J. Atmos. Oceanic Technol., 24, 214234, doi:10.1175/JTECH1949.1.

    • Search Google Scholar
    • Export Citation
  • Kilpatrick, K. A., Podestá G. P. , and Evans R. , 2001: Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res., 106, 91799197, doi:10.1029/1999JC000065.

    • Search Google Scholar
    • Export Citation
  • May, D. A., Parmeter M. M. , Olszewski D. S. , and McKenzie B. D. , 1998: Operational processing of satellite sea surface temperature retrievals at the Naval Oceanographic Office. Bull. Amer. Meteor. Soc., 79, 397407, doi:10.1175/1520-0477(1998)079<0397:OPOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 1691414 169240, doi:10.1029/97JC02906.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Coauthors, 2012: A 20 year independent record of sea surface temperature for climate from Along-Track Scanning Radiometers. J. Geophys. Res., 117, C12013, doi:10.1029/2012JC008400.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., 1993: Impact of Mount Pinatubo aerosols on satellite-derived sea surface temperature. J. Climate, 6, 768774, doi:10.1175/1520-0442(1993)006<0768:IOMPAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., 2009: What’s new in version 2. NOAA, 10 pp. [Available online at http://www.ncdc.noaa.gov/sst/papers/oisst_daily_v02r00_version2-features.pdf.]

  • Reynolds, R. W., and Smith T. M. , 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Rayner N. A. , Smith T. M. , Stokes D. C. , and Wang W. , 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Smith T. M. , Liu C. , Chelton D. B. , Casey K. S. , and Schlax M. G. , 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Reynolds R. W. , 2003: Extended reconstruction of global sea surface temperature based on COADS data (1854–1997). J. Climate, 16, 14951510, doi:10.1175/1520-0442-16.10.1495.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Reynolds R. W. , 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., Reynolds R. W. , Peterson T. C. , and Lawrimore J. , 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.]

  • Van den Dool, H. M., Saha S. , and Johansson A. , 2000: Empirical orthogonal teleconnections. J. Climate, 13, 14211435, doi:10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., and Coauthors, 2011: ICOADS Release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, doi:10.1002/joc.2103.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., Smith T. M. , and Reynolds R. W. , 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 16011612, doi:10.1175/1520-0442-16.10.1601.

    • Search Google Scholar
    • Export Citation
  • Zhang, H.-M., Reynolds R. W. , and Smith T. M. , 2004: Bias characteristics in the AVHRR sea surface temperature. Geophys. Res. Lett., 31, L01307, doi:10.1029/2003GL018804.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 349 136 10
PDF Downloads 219 77 16