Influences of the Choice of Climatology on Ocean Heat Content Estimation

Lijing Cheng International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lijing Cheng in
Current site
Google Scholar
PubMed
Close
and
Jiang Zhu International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jiang Zhu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The choice of climatology is an essential step in calculating the key climate indicators, such as historical ocean heat content (OHC) change. The anomaly field is required during the calculation and is obtained by subtracting the climatology from the absolute field. The climatology represents the ocean spatial variability and seasonal circle. This study found a considerable weaker long-term trend when historical climatologies (constructed by using historical observations within a long time period, i.e., 45 yr) were used rather than Argo-period climatologies (i.e., constructed by using observations during the Argo period, i.e., since 2004). The change of the locations of the observations (horizontal sampling) during the past 50 yr is responsible for this divergence, because the ship-based system pre-2000 has insufficient sampling of the global ocean, for instance, in the Southern Hemisphere, whereas this area began to achieve full sampling in this century by the Argo system. The horizontal sampling change leads to the change of the reference time (and reference OHC) when the historical-period climatology is used, which weakens the long-term OHC trend. Therefore, Argo-period climatologies should be used to accurately assess the long-term trend of the climate indicators, such as OHC.

Corresponding author address: Jiang Zhu, ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: jzhu@mail.iap.ac.cn; chenglij@mail.iap.ac.cn

Abstract

The choice of climatology is an essential step in calculating the key climate indicators, such as historical ocean heat content (OHC) change. The anomaly field is required during the calculation and is obtained by subtracting the climatology from the absolute field. The climatology represents the ocean spatial variability and seasonal circle. This study found a considerable weaker long-term trend when historical climatologies (constructed by using historical observations within a long time period, i.e., 45 yr) were used rather than Argo-period climatologies (i.e., constructed by using observations during the Argo period, i.e., since 2004). The change of the locations of the observations (horizontal sampling) during the past 50 yr is responsible for this divergence, because the ship-based system pre-2000 has insufficient sampling of the global ocean, for instance, in the Southern Hemisphere, whereas this area began to achieve full sampling in this century by the Argo system. The horizontal sampling change leads to the change of the reference time (and reference OHC) when the historical-period climatology is used, which weakens the long-term OHC trend. Therefore, Argo-period climatologies should be used to accurately assess the long-term trend of the climate indicators, such as OHC.

Corresponding author address: Jiang Zhu, ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: jzhu@mail.iap.ac.cn; chenglij@mail.iap.ac.cn
Save
  • Abraham, J. P., Gorman J. M. , Reseghetti F. , Sparrow E. M. , and Minkowycz W. J. , 2012: Drag coefficients for rotating expendable bathythermographs and the impact of launch parameters on depth predictions. Numer. Heat Transfer, 62A, 25–43, doi:10.1080/10407782.2012.672898.

    • Search Google Scholar
    • Export Citation
  • Abraham, J. P., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450–483, doi:10.1002/rog.20022.

    • Search Google Scholar
    • Export Citation
  • Boyer, T., and Levitus S. , 1994: Quality control and processing of historical oceanographic temperature, salinity and oxygen data. NOAA Tech. Rep. NESDIS 81, 64 pp.

  • Boyer, T., and Coauthors, 2009: World Ocean Database 2009. S. Levitus, Ed., NOAA Atlas NESDIS 66, 216 pp.

  • Cheng, L., and Zhu J. , 2014a: Artifacts in variations of ocean heat content induced by the observation system changes. Geophys. Res. Lett., 41, 7276–7283, doi:10.1002/2014GL061881.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Zhu J. , 2014b: Uncertainties of the ocean heat content estimation induced by insufficient vertical resolution of historical ocean subsurface observations. J. Atmos. Oceanic Technol., 31, 1383–1396, doi:10.1175/JTECH-D-13-00220.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., Zhu J. , Cowley R. , Boyer T. , and Wijffels S. , 2014: Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Oceanic Technol.,31, 1793–1825, doi:10.1175/JTECH-D-13-00197.1

  • Church, J. A., and Coauthors, 2011: Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.

    • Search Google Scholar
    • Export Citation
  • Cowley, R., Wijffels S. , Cheng L. , Boyer T. , and Kizu S. , 2013: Biases in expendable bathythermograph data: A new view based on historical side-by-side comparisons. J. Atmos. Oceanic Technol., 30, 1195–1225, doi:10.1175/JTECH-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., Church J. A. , White N. J. , Gleckler P. J. , Wijffels S. E. , Barker P. M. , and Dunn J. R. , 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 1090–1096, doi:10.1038/nature07080.

    • Search Google Scholar
    • Export Citation
  • Gorman J. M., Abraham J. , Schwalbach D. , Shepard T. , Stark J. , and Reseghetti F. , 2014: Experimental verification of drag forces on spherical objects entering water. J. Mar. Biol. Oceanogr.,3, doi:10.4172/2324-8661.1000126.

  • Gouretski, V., and Koltermann K. P. , 2007: How much is the ocean really warming? Geophys. Res. Lett., 34, L01610, doi:10.1029/2006GL027834.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and Reseghetti F. , 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I, 57, 812–833, doi:10.1016/j.dsr.2010.03.011.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., and Kimoto M. , 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287–299, doi:10.1007/s10872-009-0027-7.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., Mishonov A. V. , Antonov J. I. , Boyer T. P. , Garcia H. E. , Baranova O. K. , Zweng M. M. , and Johnson D. R. , 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Lyman, J. M., and Johnson G. C. , 2008: Estimating annual global upper-ocean heat content anomalies despite irregular in situ ocean sampling. J. Climate, 21, 5629–5641, doi:10.1175/2008JCLI2259.1.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., and Johnson G. C. , 2014: Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Climate, 27, 1945–1957, doi:10.1175/JCLI-D-12-00752.1.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., Good S. A. , Gouretski V. V. , Ishii M. , Johnson G. C. , Palmer M. D. , Smith D. M. , and Willis J. K. , 2010: Robust warming of the global upper ocean. Nature, 465, 334–337, doi:10.1038/nature09043.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and Haines K. , 2009: Estimating oceanic heat content change using isotherms. J. Climate, 22, 4953–4969, doi:10.1175/2009JCLI2823.1.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 255–316.

  • Roemmich, D., and Gilson J. , 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81–100, doi:10.1016/j.pocean.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., Gaillard F. , and Le Traon P.-Y. , 2009: Global hydrographic variability patterns during 2003–2008. J. Geophys. Res., 114, C09007, doi:10.1029/2008JC005237.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., Roemmich D. , and Cornuelle B. , 2004: Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res.,109, C12036, doi:10.1029/2003JC002260.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1308 699 227
PDF Downloads 390 66 12