• Achtemeier, G. L., 1991: The use of insects as tracers for “clear-air” boundary-layer studies by Doppler radar. J. Atmos. Oceanic Technol., 8, 746765, doi:10.1175/1520-0426(1991)008<0746:TUOIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications.Cambridge University Press, 636 pp.

  • Chapman, J. W., , Smith A. D. , , Woiwod I. P. , , Reynolds D. R. , , and Riley J. R. , 2002: Development of vertical-looking radar technology for monitoring insect migration. Comput. Electron. Agric., 35, 95110, doi:10.1016/S0168-1699(02)00013-3.

    • Search Google Scholar
    • Export Citation
  • Chilson, P. B., and Coauthors, 2012: Partly cloudy with a chance of migration: Weather, radars, and aeroecology. Bull. Amer. Meteor. Soc., 93, 669686, doi:10.1175/BAMS-D-11-00099.1.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., , Alberty R. L. , , and Burgess D. W. , 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645653, doi:10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., , and Zrnić D. S. , 2006: Doppler Radar and Weather Observations.2nd ed. Academic Press, 562 pp.

  • Doviak, R. J., , Bringi V. , , Ryzhkov A. , , Zahrai A. , , and Zrnić D. S. , 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278, doi:10.1175/1520-0426(2000)017<0257:CFPUTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drake, V. A., 1983: Collective orientation by nocturnally migrating Australian plague locusts, Chortoicetes terminifera (Walker) (Orthoptera: Acrididae): A radar study. Bull. Entomol. Res., 73, 679692, doi:10.1017/S0007485300009287.

    • Search Google Scholar
    • Export Citation
  • Drake, V. A., , and Reynolds D. R. , 2012: Radar Entomology: Observing Insect Flight and Migration.CABI, 489 pp.

  • Dudley, R., , and Ellington C. P. , 1990: Mechanics of forward flight in bumblebees: I. Kinematics and morphology. J. Exp. Biol., 148, 1952.

    • Search Google Scholar
    • Export Citation
  • Fischer, H., , and Kutsch W. , 2000: Relationships between body mass, motor output and flight variables during free flight of juvenile and mature adult locusts, Schistocerca gregaria. J. Exp. Biol., 203, 27232735.

    • Search Google Scholar
    • Export Citation
  • Gibo, D. L., 1981: Altitudes attained by migrating monarch butterflies, Danaus p. plexippus (Lepidoptera: Danaidae), as reported by glider pilots. Can. J. Zool., 59, 571572, doi:10.1139/z81-084.

    • Search Google Scholar
    • Export Citation
  • Gibo, D. L., , and Pallett M. J. , 1979: Soaring flight of monarch butterflies, Danaus plexippus (Lepidoptera: Danidae), during the late summer migration in southern Ontario. Can. J. Zool., 57, 13931401, doi:10.1139/z79-180.

    • Search Google Scholar
    • Export Citation
  • Glover, K. M., , Hardy K. R. , , Konrad T. G. , , Sullivan W. N. , , and Michaels A. S. , 1966: Radar observations of insects in free flight. Science, 154, 967972, doi:10.1126/science.154.3752.967.

    • Search Google Scholar
    • Export Citation
  • Gradshteyn, I. S., , Ryzhik I. M. , , and Jeffrey A. , 1980: Table of Integrals, Series, and Products.Academic Press, Inc., 1160 pp.

  • Hardy, K. R., , and Katz I. , 1969: Probing the clear atmosphere with high power, high resolution radars. Proc. IEEE,57, 468–480, doi:10.1109/PROC.1969.7001.

  • Hobbs, S. E., , and Aldhous A. C. , 2006: Insect ventral radar cross-section polarization dependence measurements for radar entomology. IEE Proc. Radar Sonar Navig.,153, 502–508.

  • Lang, T. J., , Rutledge S. A. , , and Smith J. L. , 2004: Observations of quasi-symmetric echo patterns in clear air with the CSU–CHILL polarimetric radar. J. Atmos. Oceanic Technol., 21, 11821189, doi:10.1175/1520-0426(2004)021<1182:OOQEPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leskinen, M., , Moisseev D. , , Koistinen J. , , and Markkula I. , 2012: Migrating insects observed by weather radar in traps. Proc. Seventh European Conf. on Radar in Meteorology and Hydrology, Toulouse, France, Météo-France, 294 NMUR. [Available online at http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/NMUR_213_ext_abs.pdf.]

  • Lhermitte, R., 2002: Centimeter and Millimeter Wavelength Radars in Meteorology.Lhermitte Publications, 550 pp.

  • Melnikov, V. M., , Leskinen M. , , and Koistinen J. , 2010: Spectral polarimetric parameters of radar signals from atmospheric biota. Proc. Sixth European Conf. on Radar in Meteorology and Hydrology, Sibiu, Romania, EUMETSAT, P10.8. [Available online at http://www.erad2010.org/pdf/POSTER/Wednesday/04_Others/09_ERAD2010_0208_extended_modificat.pdf.]

  • Melnikov, V. M., , Doviak R. J. , , Zrnić D. S. , , and Stensrud D. J. , 2011: Mapping Bragg scatter with a polarimetric WSR-88D. J. Atmos. Oceanic Technol., 28, 12731285, doi:10.1175/JTECH-D-10-05048.1.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., , Lee R. R. , , and Langlieb N. J. , 2012: Resonance effects within S-band in echoes from birds. IEEE Geosci. Remote Sens. Lett., 9, 413416, doi:10.1109/LGRS.2011.2169933.

    • Search Google Scholar
    • Export Citation
  • Mueller, E. G., , and Larkin R. P. , 1985: Insects observed using dual-polarization radar. J. Atmos. Oceanic Technol., 2, 4954, doi:10.1175/1520-0426(1985)002<0049:IOUDPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rennie, S. L., , Illingworth A. J. , , Dance S. L. , , and Ballard S. P. , 2010: The accuracy of Doppler radar wind retrieval using insects as targets. Meteor. Appl., 17, 419432.

    • Search Google Scholar
    • Export Citation
  • Riley, J. R., 1975: Collective orientation in night-flying insects. Nature, 253, 113114, doi:10.1038/253113a0.

  • Riley, J. R., 1985: Radar cross sections of insects. Proc. IEEE, 73, 228232, doi:10.1109/PROC.1985.13135.

  • Taylor, G. K., 2001: Mechanics and aerodynamics of insect flight control. Biol. Rev., 76, 449471, doi:10.1017/S1464793101005759.

  • Vaughn, C. R., 1985: Birds and insects as radar targets. A review. Proc. IEEE, 73, 205227, doi:10.1109/PROC.1985.13134.

  • Vivekanandan, J., , Hubbert J. , , Ellis S. , , and Wilson J. , 2013: Radar observations and radar model computations of biological scatterers. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 13A.1. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228799.html.]

  • Willmott, A. P., , and Ellington C. P. , 1997: The mechanics of flight in the hawkmoth Manduca sexta: I. Kinematics of hovering and forward flight. J. Exp. Biol., 200, 27052722.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , and Schreiber W. E. , 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, doi:10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , Weckwerth T. M. , , Vivekanandan J. , , Wakimoto R. M. , , and Russell R. W. , 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of deriving winds. J. Atmos. Oceanic Technol., 11, 11841206, doi:10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolf, W. W., , Vaughn C. R. , , Harris R. , , and Loper G. M. , 1993: Insect radar cross-sections for aerial density measurements and target classification. Trans. Amer. Soc. Agric. Biol. Eng., 36, 949954, doi:10.13031/2013.28420.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., , and Ryzhkov A. V. , 1998: Observations of insects and birds with a polarimetric radar. IEEE Trans. Geosci. Remote Sens., 36, 661668, doi:10.1109/36.662746.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 17
PDF Downloads 13 13 9

Asymmetric Radar Echo Patterns from Insects

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • 2 U.S. National Weather Service, Silver Spring, Maryland
  • 3 Agricultural Research Service, U.S. Department of Agriculture, College Station, Texas
© Get Permissions
Restricted access

Abstract

Radar echoes from insects, birds, and bats in the atmosphere exhibit both symmetry and asymmetry in polarimetric patterns. Symmetry refers to similar magnitudes of polarimetric variables at opposite azimuths, and asymmetry relegates to differences in these magnitudes. Asymmetry can be due to different species observed at different azimuths. It is shown in this study that when both polarized waves are transmitted simultaneously, asymmetric patterns can also be caused by insects of the same species that are oriented in the same direction. A model for scattering of simultaneously transmitted horizontally and vertically polarized radar waves by insects is developed. The model reproduces the main features of asymmetric patterns in differential reflectivity: the copolar correlation coefficient and the differential phase. The radar differential phase on transmit between horizontally and vertically polarized waves plays a critical role in the formations of the asymmetric patterns. The width-to-length ratios of insects’ bodies and their orientation angles are retrieved from matching the model output with radar data.

Corresponding author address: Valery Melnikov, CIMMS, University of Oklahoma, 120 David L. Boren Blvd., Room 4919, Norman, OK 73072. E-mail: valery.melnikov@noaa.gov

Abstract

Radar echoes from insects, birds, and bats in the atmosphere exhibit both symmetry and asymmetry in polarimetric patterns. Symmetry refers to similar magnitudes of polarimetric variables at opposite azimuths, and asymmetry relegates to differences in these magnitudes. Asymmetry can be due to different species observed at different azimuths. It is shown in this study that when both polarized waves are transmitted simultaneously, asymmetric patterns can also be caused by insects of the same species that are oriented in the same direction. A model for scattering of simultaneously transmitted horizontally and vertically polarized radar waves by insects is developed. The model reproduces the main features of asymmetric patterns in differential reflectivity: the copolar correlation coefficient and the differential phase. The radar differential phase on transmit between horizontally and vertically polarized waves plays a critical role in the formations of the asymmetric patterns. The width-to-length ratios of insects’ bodies and their orientation angles are retrieved from matching the model output with radar data.

Corresponding author address: Valery Melnikov, CIMMS, University of Oklahoma, 120 David L. Boren Blvd., Room 4919, Norman, OK 73072. E-mail: valery.melnikov@noaa.gov
Save