• Baum, B. A., , Menzel W. P. , , Frey R. A. , , Tobin D. C. , , Holz R. E. , , Ackerman S. A. , , Heidinger A. K. , , and Yang P. , 2012: MODIS cloud-top property refinements for Collection 6. J. Appl. Meteor. Climatol., 51, 11451163, doi:10.1175/JAMC-D-11-0203.1.

    • Search Google Scholar
    • Export Citation
  • Cairns, B., 1995: Diurnal variations of cloud from ISCCP data. Atmos. Res., 37, 133146, doi:10.1016/0169-8095(94)00074-N.

  • Campbell, G. G., 2004: View angle dependence of cloudiness and the trend in ISCCP cloudiness. 13th Conf. on Satellite Meteorology and Oceanography, Norfolk, VA, Amer. Meteor. Soc., P6.7. [Available online at https://ams.confex.com/ams/13SATMET/techprogram/paper_79041.htm.]

  • Clement, A. C., , Burgman R. , , and Norris J. R. , 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., , and Bony S. , 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144, doi:10.1175/2008JCLI2239.1.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., , Heidinger A. K. , , and Vimont D. J. , 2007: Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys. Res. Lett., 34, L04701, doi:10.1029/2006GL028083.

    • Search Google Scholar
    • Export Citation
  • Foster, M. J., , and Heidinger A. , 2013: PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Climate, 26, 414425, doi:10.1175/JCLI-D-11-00666.1.

    • Search Google Scholar
    • Export Citation
  • Free, M., , and Sun B. , 2013: Time-varying biases in U.S. total cloud cover data. J. Atmos. Oceanic Technol., 30, 28382849, doi:10.1175/JTECH-D-13-00026.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., , Evan A. T. , , Foster M. J. , , and Walther A. , 2012: A naive Bayesian cloud detection scheme derived from CALIPSO and applied to PATMOS-x. J. Appl. Meteor. Climatol., 51, 11291144, doi:10.1175/JAMC-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., , Foster M. J. , , Walther A. , , and Zhao X. , 2014: The Pathfinder Atmospheres–Extended (PATMOS-x) AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909–922, doi:10.1175/BAMS-D-12-00246.1.

    • Search Google Scholar
    • Export Citation
  • Jacobowitz, H., , Stowe L. L. , , Ohring G. , , Heidinger A. K. , , Knapp K. , , and Nalli N. R. , 2003: The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) climate dataset: A resource for climate research. Bull. Amer. Meteor. Soc., 84, 785793, doi:10.1175/BAMS-84-6-785.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , Zhang Y. , , Zelinka M. D. , , Pincus R. , , Boyle J. , , and Gleckler P. J. , 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res. Atmos., 118, 13291342, doi:10.1002/jgrd.50141.

    • Search Google Scholar
    • Export Citation
  • Knapp, K., 2008: Calibration assessment of ISCCP geostationary infrared observations using HIRS. J. Atmos. Oceanic Technol., 25, 183195, doi:10.1175/2007JTECHA910.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., , Rossow W. B. , , Inoue T. , , and Stubenrauch C. J. , 2002: Did the eruption of Mt. Pinatubo volcano affect cirrus properties? J. Climate, 15, 28062820, doi:10.1175/1520-0442(2002)015<2806:DTEOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., 1989: Viewing zenith angle dependence of cloudiness determined from coincident GOES East and GOES West data. J. Geophys. Res., 94, 23032320, doi:10.1029/JD094iD02p02303.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1999: On trends and possible artifacts in global ocean cloud cover between 1952 and 1995. J. Climate, 12, 18641870, doi:10.1175/1520-0442(1999)012<1864:OTAPAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 2000: What can cloud observations tell us about climate variability. Space Sci. Rev., 94, 375380, doi:10.1023/A:1026704314326.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and Wild M. , 2007: Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming,” and solar “brightening.” J. Geophys. Res., 112, D08214, doi:10.1029/2006JD007794.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and Slingo A. , 2009: Trends in observed cloudiness and Earth’s radiation budget: What do we not know and what do we need to know? Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., Strüngmann Forum Reports, MIT Press, 17–36.

  • Norris, J. R., , and Evan A. T. , 2015: Cloud properties from ISCCP and PATMOS-x corrected for spurious variability related to changes in satellite orbits, instrument calibrations, and other factors. Research Data Archive, Computational and Information Systems Laboratory, NCAR, Boulder, CO, doi:10.5065/D62J68XR.

  • Ramanathan, V., , Cess R. D. , , Harrison E. F. , , Minnis P. , , Barkstrom B. R. , , Ahmad E. , , and Hartmann D. , 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, doi:10.1126/science.243.4887.57.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and Schiffer R. A. , 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , Walker A. W. , , Beuschel D. E. , , and Roiter M. D. , 1996: International Satellite Cloud Climatology Project (ISCCP): Documentation of new cloud datasets. WMO Tech. Doc. WMO/TD-737, 115 pp. [Available online at http://isccp.giss.nasa.gov/pub/documents/d-doc.pdf.]

  • Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 45
PDF Downloads 34 34 32

Empirical Removal of Artifacts from the ISCCP and PATMOS-x Satellite Cloud Records

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
© Get Permissions
Restricted access

Abstract

The International Satellite Cloud Climatology Project (ISCCP) dataset and the Pathfinder Atmospheres–Extended (PATMOS-x) dataset are two commonly used multidecadal satellite cloud records. Because they are constructed from weather satellite measurements lacking long-term stability, ISCCP and PATMOS-x suffer from artifacts that inhibit their use for investigating cloud changes over recent decades. The present study describes and applies a post hoc method to empirically remove spurious variability from anomalies in total cloud fraction at each grid box. Spurious variability removed includes that associated with systematic changes in satellite zenith angle, drifts in satellite equatorial crossing time, and unrealistic large-scale spatially coherent anomalies associated with known and unidentified problems in instrument calibration and ancillary data. The basic method is to calculate for each grid box the least squares best-fit line between cloud anomalies and artifact factor anomalies, and to let the residuals from the best-fit line be the newly corrected data. After the correction procedure, the patterns of regional trends in ISCCP and PATMOS-x total cloud fraction appear much more natural. The corrected data cannot be used for studies of globally averaged cloud change, however, because the methods employed remove any real cloud variability occurring on global scales together with spurious variability. An examination of Moderate Resolution Imaging Spectroradiometer (MODIS) total cloud fraction data indicates that removing global-scale variability has little impact on regional patterns of cloud change. Corrected ISCCP and PATMOS-x data are available from the Research Data Archive at NCAR.

Denotes Open Access content.

Corresponding author address: Joel Norris, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, Dept. 0206, La Jolla, CA 92093-0206. E-mail: jnorris@ucsd.edu

Abstract

The International Satellite Cloud Climatology Project (ISCCP) dataset and the Pathfinder Atmospheres–Extended (PATMOS-x) dataset are two commonly used multidecadal satellite cloud records. Because they are constructed from weather satellite measurements lacking long-term stability, ISCCP and PATMOS-x suffer from artifacts that inhibit their use for investigating cloud changes over recent decades. The present study describes and applies a post hoc method to empirically remove spurious variability from anomalies in total cloud fraction at each grid box. Spurious variability removed includes that associated with systematic changes in satellite zenith angle, drifts in satellite equatorial crossing time, and unrealistic large-scale spatially coherent anomalies associated with known and unidentified problems in instrument calibration and ancillary data. The basic method is to calculate for each grid box the least squares best-fit line between cloud anomalies and artifact factor anomalies, and to let the residuals from the best-fit line be the newly corrected data. After the correction procedure, the patterns of regional trends in ISCCP and PATMOS-x total cloud fraction appear much more natural. The corrected data cannot be used for studies of globally averaged cloud change, however, because the methods employed remove any real cloud variability occurring on global scales together with spurious variability. An examination of Moderate Resolution Imaging Spectroradiometer (MODIS) total cloud fraction data indicates that removing global-scale variability has little impact on regional patterns of cloud change. Corrected ISCCP and PATMOS-x data are available from the Research Data Archive at NCAR.

Denotes Open Access content.

Corresponding author address: Joel Norris, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, Dept. 0206, La Jolla, CA 92093-0206. E-mail: jnorris@ucsd.edu
Save