• Albrecht, B. A., , Fairall C. W. , , Thomson D. W. , , and White A. , 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992, doi:10.1029/GL017i001p00089.

    • Search Google Scholar
    • Export Citation
  • Argyrouli, A., , Budko N. , , Russchenberg H. , , and Unal C. , 2012: The effect of droplet clustering on the statistics of radar backscatter from water clouds. Proc. Ninth Int. Symp. on Tropospheric Profiling, L’Aquila, Italy, ESA, P22. [Available online at http://cetemps.aquila.infn.it/istp/proceedings/Session%20P%20-%20Posters/P22_Argyrouli.pdf.]

  • Atlas, D., 2002: Radar calibration: Some simple approaches. Bull. Amer. Meteor. Soc., 83, 13131316, doi:10.1175/1520-0477(2002)083<1313:RCSSA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., , Seifert A. , , Förstner J. , , and Raschendorfer D. M. M. , 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Bauer-Pfundstein, M. R., , and Görsdorf U. , 2007: Target separation and classification using cloud radar Doppler-spectra. 33rd Int. Conf. on Radar Meteorology, Cairns, QLD, Australia, Amer. Meteor. Soc., 11B.2. [Available online at https://ams.confex.com/ams/33Radar/techprogram/paper_123456.htm.]

  • Bharadwaj, N., , Widener K. B. , , Lindenmaier A. , , and Venkatesh V. , 2013: Calibration system for ARM radars. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 260. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228622.html.]

  • Boers, R., , Russchenberg H. , , Erkelens J. , , Venema V. , , van Lammeren A. , , Apituley A. , , and Jongen S. , 2000: Ground-based remote sensing of stratocumulus properties during CLARA, 1996. J. Appl. Meteor., 39, 169181, doi:10.1175/1520-0450(2000)039<0169:GBRSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bormotov, V., , Peters G. , , Schünemann K. , , Vavriv D. , , Vinogradov V. , , and Volkov V. , 2000: A 36 GHz Doppler radar for remote sensing of the atmosphere. AP 2000: Millennium Conf. on Antenna and Propagation, D. Danesy and H. Sawaya, Eds., ESA, 319320.

  • Bouniol, D., and Coauthors, 2010: Using continuous ground-based radar and lidar measurements for evaluating the representation of clouds in four operational models. J. Appl. Meteor. Climatol., 49, 19711991, doi:10.1175/2010JAMC2333.1.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., , Miller M. A. , , Albrecht B. A. , , Ackerman T. P. , , Verlinde J. , , Babb D. M. , , Peters R. , , and Syrett W. J. , 1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12, 201229, doi:10.1175/1520-0426(1995)012<0201:AEOAGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and Coauthors, 2007: An intercomparison of microphysical retrieval algorithms for upper-tropospheric ice clouds. Bull. Amer. Meteor. Soc., 191–204, doi:10.1175/BAMS-88-2-191.

  • Doviak, R. J., , and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Fukao, S., , and Hamazu K. , 2014: Radar for Meteorological and Atmospheric Observations. Springer, 537 pp.

  • Gage, K. S., , Williams C. R. , , Johnston P. E. , , Ecklund W. , , Cifelli R. , , Tokay A. , , and Carter D. A. , 2000: Doppler radar profilers as calibration tools for scanning radars. J. Appl. Meteor., 39, 22092222, doi:10.1175/1520-0450(2001)040<2209:DRPACT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harris, F. J., 1978: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE,66, 51–83, doi:10.1109/PROC.1978.10837.

  • Henderson, P. W., , and Pincus R. , 2009: Multiyear evaluations of a cloud model using ARM data. J. Atmos. Sci., 66, 29252936, doi:10.1175/2009JAS2957.1.

    • Search Google Scholar
    • Export Citation
  • Hennemuth, B., , Weiss A. , , Bösenberg J. , , Jacob D. , , Linné H. , , Peters G. , , and Pfeifer S. , 2008: Quality assessment of water cycle parameters in REMO by radar-lidar synergy. Atmos. Chem. Phys., 8, 287308, doi:10.5194/acp-8-287-2008.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., , and Sekhon R. , 1974: Objective determination of the noise level in Doppler spectra. J. Appl. Meteor., 13, 808811, doi:10.1175/1520-0450(1974)013<0808:ODOTNL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , Funk N. T. & , Weiss R. R. Sr., Locatelli J. D. , , and Biswas K. R. , 1985: Evaluation of a 35 GHz radar for cloud physics research. J. Atmos. Oceanic Technol., 2, 3548, doi:10.1175/1520-0426(1985)002<0035:EOAGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., , and O’Connor E. J. , 2004: Facilitating cloud radar and lidar algorithms: The Cloudnet instrument synergy/target categorization product. University of Reading, 14 pp. [Available online at http://www.met.rdg.ac.uk/~swrhgnrj/publications/categorization.pdf.]

  • Hogan, R. J., , Mittermaier M. P. , , and Illingworth A. J. , 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, doi:10.1175/JAM2340.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., , O’Connor E. J. , , and Illingworth A. J. , 2009: Verification of cloud-fraction forecasts. Quart. J. Roy. Meteor. Soc., 135, 14941511, doi:10.1002/qj.481.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet. Bull. Amer. Meteor. Soc., 88, 883898, doi:10.1175/BAMS-88-6-883.

  • Joe, P., , and Smith P. L. , 2001: Summary of radar calibration workshop. 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 3.1. [Available online at https://ams.confex.com/ams/30radar/techprogram/paper_21882.htm.]

  • Kollias, P., , Clothiaux E. , , Miller M. , , Albrecht B. , , and Ackerman G. T. , 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624, doi:10.1175/BAMS-88-10-1608.

    • Search Google Scholar
    • Export Citation
  • Krofli, R., , and Kelly R. , 1996: Meteorological research application of MM-wave radar. Meteor. Atmos. Phys., 59, 105121, doi:10.1007/BF01032003.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol., 7, 464479, doi:10.1175/1520-0426(1990)007<0464:AASOMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., 1989: MPM—An atmospheric millimeter-wave propagation model. Int. J. Infrared Millimeter Waves, 10, 631650, doi:10.1007/BF01009565.

    • Search Google Scholar
    • Export Citation
  • Luke, E. P., , and Kollias P. , 2013: Separating cloud and drizzle radar moments during precipitation onset using Doppler spectra. J. Atmos. Oceanic Technol., 30, 16561671, doi:10.1175/JTECH-D-11-00195.1.

    • Search Google Scholar
    • Export Citation
  • Lyons, R. G., 2004: Understanding Digital Signal Processing. 2nd ed. Prentice Hall, 665 pp.

  • Mace, G. G., , Ackerman T. P. , , Minnis P. , , and Young D. F. , 1998: Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data. J. Geophys. Res., 103, 23 20723 216, doi:10.1029/98JD02117.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , Heymsfield A. J. , , and Poellot M. R. , 2002: On retrieving the microphysical properties of cirrus clouds using the moments of the millimeter-wavelength Doppler spectrum. J. Geophys. Res.,107, 4815, doi:10.1029/2001JD001308.

  • Marshall, J. S., , and Hitschfeld W. , 1953: Interpretation of the fluctuating echo from randomly distributed scatterers. Part I. Can. J. Phys., 31, 962994, doi:10.1139/p53-084.

    • Search Google Scholar
    • Export Citation
  • Mazin, I. P., , and Minervin V. E. , 1993: Regulation of terminology in cloud physics. Russ. Meteor. Hydrol.,4, 1–8.

  • Melchionna, S., , Bauer M. , , and Peters G. , 2008: A new algorithm for the extraction of cloud parameters using multipeak analysis of cloud radar data—First application and preliminary results. Meteor. Z., 17, 613620, doi:10.1127/0941-2948/2008/0322.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., , Martner B. E. , , Post M. , , Welsh R. A. K. , , and Widener K. B. , 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443455, doi:10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., , O’Connor E. J. , , and Petch J. C. , 2012: Evaluation of two cloud parametrization schemes using ARM and Cloud-Net observations. Quart. J. Roy. Meteor. Soc., 138, 964–979, doi:10.1002/qj.969.

    • Search Google Scholar
    • Export Citation
  • Priestley, M., 1981: Spectral Analysis and Time Series. Academic Press, 890 pp.

  • Probert-Jones, J. R., 1962: The radar equation in meteorology. Quart. J. Roy. Meteor. Soc., 88, 485495, doi:10.1002/qj.49708837810.

  • Protat, A., and Coauthors, 2009: Assessment of Cloudsat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26, 17171741, doi:10.1175/2009JTECHA1246.1.

    • Search Google Scholar
    • Export Citation
  • Richards, M. A., , Scheer J. A. , , and Holm W. A. , Eds., 2010: Principles of Modern Radars: Basic Principles. Scitech Publishing, Inc., 960 pp.

  • Richter, F., , Barfus K. , , Berger F. H. , , and Görsdorf U. , 2007: The influence of cloud top variability from radar measurements on 3-D radiative transfer. Atmos. Chem. Phys., 7, 46994708, doi:10.5194/acp-7-4699-2007.

    • Search Google Scholar
    • Export Citation
  • Russchenberg, H., , and Boers R. , 2004: Radar sensor synergy for cloud studies; case study of water clouds. Weather Radar: Principles and Advanced Applications, P. Meischner, Ed., Physics of Earth and Space Environments, Springer, 235–254.

  • Russchenberg, H., , Löhnert U. , , Brandau C. , , and Ebell K. , 2009: Radar scattering by stratocumulus: Often much lower than expected. Why? Proc. Eighth Int. Symp. on Tropospheric Profiling, Delft, Netherlands, TU Delft, KNMI, and RIVM, S01–O06-1–S01-O06-4. [Available online at http://www.knmi.nl/~apituley/files/istp8/data/1821516.pdf.]

  • Sekelsky, S. M., 2002: Near-field reflectivity and antenna boresight gain corrections for millimeter-wave atmospheric radars. J. Atmos. Oceanic Technol., 19, 468477, doi:10.1175/1520-0426(2002)019<0468:NFRAAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skolnik, M. I, 2002: Introduction to Radar Systems. 3rd ed. McGraw-Hill, 772 pp.

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, doi:10.1175/JCLI-3243.1.

  • Turner, D. D., and Coauthors, 2007: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc.,88, 177–190, doi:10.1175/BAMS-88-2-177.

  • Ulaby, F. T., , Moore R. , , and Fung A. K. , 1981: Microwave Remote Sensing Fundamentals and Radiometry. Vol. 1, Microwave Remote Sensing, Artech House. Inc., 456 pp.

  • Venema, V., , Russchenberg H. , , Apituley A. , , van Lammeren A. , , and Ligthart L. , 2000: Cloud boundary height measurements using lidar and radar. Phys. Chem. Earth, 25B, 129134, doi:10.1016/S1464-1909(99)00139-2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , and Sassen K. , 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 16651682, doi:10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , and Sassen K. , 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part II: Midlatitude cirrus microphysical and radiative properties. J. Atmos. Sci., 59, 22912302, doi:10.1175/1520-0469(2002)059<2291:CCMPRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Welch, P. D., 1967: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust., 15, 7073, doi:10.1109/TAU.1967.1161901.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2012: Toward understanding of differences in current cloud retrievals of ARM ground-based measurements. J. Geophys. Res.,117, D10206, doi:10.1029/2011JD016792.

  • Zrnić, D. S., 1979: Estimation of spectral moments for weather echoes. IEEE Trans. Geosci. Electron., 17, 113128, doi:10.1109/TGE.1979.294638.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1980: Spectral statistics for complex colored discrete-time sequence. IEEE Trans. Acoust. Speech Signal Process., 28, 596599, doi:10.1109/TASSP.1980.1163452.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 97 97 64
PDF Downloads 49 49 25

A 35-GHz Polarimetric Doppler Radar for Long-Term Observations of Cloud Parameters—Description of System and Data Processing

View More View Less
  • 1 Meteorologisches Observatorium Lindenberg/Richard-Aßmann-Observatorium, Deutscher Wetterdienst, Tauche, Germany
  • 2 Metek GmbH, Elmshorn, Germany
  • 3 Institute for Radio Astronomy, Kharkov, Ukraine
© Get Permissions
Restricted access

Abstract

A 35-GHz radar has been operating at the Meteorological Observatory Lindenberg (Germany) since 2004, measuring cloud parameters continuously. The radar is equipped with a powerful magnetron transmitter and a high-gain antenna resulting in a high sensitivity of −55 dBZ at 5-km height for a 10-s averaging time. The main purpose of the radar is to provide long-term datasets of cloud parameters for model evaluation, satellite validation, and climatological studies. Therefore, the system operates with largely unchanged parameter settings and a vertically pointing antenna. The accuracy of the internal calibration (budget calibration) has been appraised to be 1.3 dB. Cloud parameters are derived by two different approaches: macrophysical parameters have been deduced for the complete period of operation through combination with ceilometer measurements; a more enhanced target classification and the calculation of liquid and ice water contents are realized by algorithms developed in the framework of the European CloudNet project.

Denotes Open Access content.

Publisher’s Note: This article was revised on 7 October 2016 to include the open access designation that was added after initial publication.

Corresponding author address: Ulrich Görsdorf, Meteorologisches Observatorium Lindenberg/Richard-Aßmann-Observatorium, Deutscher Wetterdienst, Am Observatorium 12, D-15848 Tauche, OT Lindenberg, Germany. E-mail: ulrich.goersdorf@dwd.de

Abstract

A 35-GHz radar has been operating at the Meteorological Observatory Lindenberg (Germany) since 2004, measuring cloud parameters continuously. The radar is equipped with a powerful magnetron transmitter and a high-gain antenna resulting in a high sensitivity of −55 dBZ at 5-km height for a 10-s averaging time. The main purpose of the radar is to provide long-term datasets of cloud parameters for model evaluation, satellite validation, and climatological studies. Therefore, the system operates with largely unchanged parameter settings and a vertically pointing antenna. The accuracy of the internal calibration (budget calibration) has been appraised to be 1.3 dB. Cloud parameters are derived by two different approaches: macrophysical parameters have been deduced for the complete period of operation through combination with ceilometer measurements; a more enhanced target classification and the calculation of liquid and ice water contents are realized by algorithms developed in the framework of the European CloudNet project.

Denotes Open Access content.

Publisher’s Note: This article was revised on 7 October 2016 to include the open access designation that was added after initial publication.

Corresponding author address: Ulrich Görsdorf, Meteorologisches Observatorium Lindenberg/Richard-Aßmann-Observatorium, Deutscher Wetterdienst, Am Observatorium 12, D-15848 Tauche, OT Lindenberg, Germany. E-mail: ulrich.goersdorf@dwd.de
Save