• Battjes, J. A., 1988: Surf-zone dynamics. Annu. Rev. Fluid Mech., 20, 257291, doi:10.1146/annurev.fl.20.010188.001353.

  • Bogucki, D. J., , Jones B. H. , , and Carr M.-E. , 2005: Remote measurements of horizontal eddy diffusivity. J. Atmos. Oceanic Technol., 22, 13731380, doi:10.1175/JTECH1794.1.

    • Search Google Scholar
    • Export Citation
  • Bouguet, J.-Y., cited 2014: Camera calibration toolbox for MATLAB. [Available online at http://www.vision.caltech.edu/bouguetj/calib_doc/.]

  • Clark, D. B., , Lenain L. , , Feddersen F. , , Boss E. , , and Guza R. T. , 2014: Aerial imaging of fluorescent dye in the near shore. J. Atmos. Oceanic Technol., 31, 14101421, doi:10.1175/JTECH-D-13-00230.1.

    • Search Google Scholar
    • Export Citation
  • Dalrymple, R. A., , MacMahan J. H. , , Reniers A. J. H. M. , , and Nelko V. , 2011: Rip currents. Annu. Rev. Fluid Mech., 43, 551581, doi:10.1146/annurev-fluid-122109-160733.

    • Search Google Scholar
    • Export Citation
  • Grant, S. B., , Kim J. H. , , Jones B. H. , , Jenkins S. A. , , Wasyl J. , , and Cudaback C. , 2005: Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets. J. Geophys. Res., 110, C10025, doi:10.1029/2004JC002401.

    • Search Google Scholar
    • Export Citation
  • Hartley, R. I., , and Zisserman A. , 2003: Multiple View Geometry in Computer Vision. 2nd ed. Cambridge University Press, 665 pp.

  • Heikkilä, J., , and Silvén O. , 1997: A four-step camera calibration procedure with implicit image correction. Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, D. Plummer and I. Torwick, Eds., IEEE, 11061112, doi:10.1109/CVPR.1997.609468.

  • Hodgson, A., , Kelly N. , , and Peel D. , 2013: Unmanned aerial vehicles (UAVs) for surveying marine fauna: A Dugong case study. PLoS ONE, 8, e79556, doi:10.1371/journal.pone.0079556.

    • Search Google Scholar
    • Export Citation
  • Holland, K. T., , Holman R. A. , , Lippmann T. C. , , Stanley J. , , and Plant N. , 1997: Practical use of video imagery in nearshore oceanographic field studies. IEEE J. Oceanic Eng., 22, 8192, doi:10.1109/48.557542.

    • Search Google Scholar
    • Export Citation
  • Holman, R. A., , and Stanley J. , 2007: The history and technical capabilities of Argus. Coastal Eng., 54, 477491, doi:10.1016/j.coastaleng.2007.01.003.

    • Search Google Scholar
    • Export Citation
  • Holman, R. A., , Holland K. T. , , Lalejini D. M. , , and Spansel S. D. , 2011: Surf zone characterization from Unmanned Aerial Vehicle imagery. Ocean Dyn., 61, 19271935, doi:10.1007/s10236-011-0447-y.

    • Search Google Scholar
    • Export Citation
  • Holman, R. A., , Plant N. , , and Holland T. , 2013: cBathy: A robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. Oceans, 118, 25952609, doi:10.1002/jgrc.20199.

    • Search Google Scholar
    • Export Citation
  • Hößler, T., , and Landgraf T. , 2014: Automated traffic analysis in aerial images. Computer Vision and Graphics, L. J. Chmielewski et al., Eds., Lecture Notes in Computer Science, Vol. 8671, Springer International Publishing, 262–269, doi:10.1007/978-3-319-11331-9_32.

  • Kannala, J., , and Brandt S. S. , 2006: A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell., 28, 13351340, doi:10.1109/TPAMI.2006.153.

    • Search Google Scholar
    • Export Citation
  • Lippmann, T. C., , and Holman R. A. , 1989: Quantification of sand bar morphology: A video technique based on wave dissipation. J. Geophys. Res., 94, 9951011, doi:10.1029/JC094iC01p00995.

    • Search Google Scholar
    • Export Citation
  • MacMahan, J. H., , Reniers A. J. H. M. , , Thornton E. B. , , and Stanton T. P. , 2004: Surf zone eddies coupled with rip current morphology. J. Geophys. Res., 109, C07004, doi:10.1029/2003JC002083.

    • Search Google Scholar
    • Export Citation
  • Peregrine, D. H., 1998: Surf zone currents. Theor. Comput. Fluid Dyn., 10, 295309, doi:10.1007/s001620050065.

  • Rasmussen, J., , Nielsen J. , , Garcia-Ruiz F. , , Christensen S. , , and Streibig J. C. , 2013: Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Res., 53, 242248, doi:10.1111/wre.12026.

    • Search Google Scholar
    • Export Citation
  • Reniers, A. J. H. M., , MacMahan J. H. , , Thornton E. B. , , Stanton T. P. , , Henriquez M. , , Brown J. W. , , Brown J. A. , , and Gallagher E. , 2009: Surf zone surface retention on a rip-channeled beach. J. Geophys. Res., 114, C10010, doi:10.1029/2008JC005153.

    • Search Google Scholar
    • Export Citation
  • Rinaudo, F., , Chiabrando F. , , Lingua A. , , and Spanò A. , 2012: Archeological site monitoring: UAV photogrammetry can be an answer. Proceedings of the XXII ISPRS Congress: Imaging a Sustainable Future, M. Shortis, and J. Mills, Eds., International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIX-B5, 583–588.

  • Rogers, K., , and Finn A. , 2013: Three-dimensional UAV-based atmospheric tomography. J. Atmos. Oceanic Technol., 30, 336344, doi:10.1175/JTECH-D-12-00036.1.

    • Search Google Scholar
    • Export Citation
  • Scaramuzza, D., , Martinelli A. , , and Siegwart R. , 2006: A toolbox for easy calibrating omnidirectional cameras. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006), IEEE, 5695–5701, doi:10.1109/IROS.2006.282372.

  • Spydell, M., , and Feddersen F. , 2009: Lagrangian drifter dispersion in the surf zone: Directionally spread, normally incident waves. J. Phys. Oceanogr., 39, 809830, doi:10.1175/2008JPO3892.1.

    • Search Google Scholar
    • Export Citation
  • Tsai, R. Y., 1987: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Rob. Autom., 3, 323344, doi:10.1109/JRA.1987.1087109.

    • Search Google Scholar
    • Export Citation
  • van Dongeren, A., , Plant N. , , Cohen A. , , Roelvink D. , , Haller M. C. , , and Catalán P. , 2008: Beach Wizard: Nearshore bathymetry estimation through assimilation of model computations and remote observations. Coastal Eng., 55, 10161027, doi:10.1016/j.coastaleng.2008.04.011.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , and Kovacs J. M. , 2012: The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric., 13, 693712, doi:10.1007/s11119-012-9274-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., 1999: Flexible camera calibration by viewing a plane from unknown orientations. The Proceedings of the Seventh IEEE International Conference on Computer Vision, B. Werner, Ed., Vol. 1, IEEE, 666673, doi:10.1109/ICCV.1999.791289.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 23
PDF Downloads 14 14 7

Surfzone Monitoring Using Rotary Wing Unmanned Aerial Vehicles

View More View Less
  • 1 Hydraulic Engineering Department, Delft University of Technology, Delft, Netherlands
  • 2 Applied Marine Physics, University of Miami, Miami, Florida
  • 3 Oceanography Department, Naval Postgraduate School, Monterey, California
© Get Permissions
Restricted access

Abstract

This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather near-continuous moderate spatial resolution and high temporal resolution imagery from a fixed position high above a study site. The rotary wing UAVs used in this study can fly for ~12 min with a mean loiter radius of 1–3.5 m and a mean loiter error of 0.75–4.5 m. These numbers depend on the environmental conditions, flying style, battery type, and vehicle type. The images obtained from the UAVs, and in combination with surveyed ground control points (GCPs), can be georectified to a pixel resolution between 0.01 and 1 m, and a reprojection error—that is, the difference between the surveyed GPS location of a GCP and the location of the GCP obtained from the georectified image—of O(1 m). The flexibility of rotary wing UAVs provides moderate spatial resolution and high temporal resolution imagery, which are highly suitable to quickly obtain surfzone and beach characteristics in response to storms or for day-to-day beach safety information, as well as scientific pursuits of surfzone kinematics on different spatial and temporal scales, and dispersion and advection estimates of pollutants.

Denotes Open Access content.

Current affiliation: Flanders Hydraulic Research, Antwerp, Belgium.

Current affiliation: Delft University of Technology, Delft, Netherlands.

Corresponding author address: Ronald L. Brouwer, Flanders Hydraulic Research, Berchemlei 115, B-2140 Antwerp, Belgium. E-mail: ronald.brouwer@mow.vlaanderen.be

Abstract

This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather near-continuous moderate spatial resolution and high temporal resolution imagery from a fixed position high above a study site. The rotary wing UAVs used in this study can fly for ~12 min with a mean loiter radius of 1–3.5 m and a mean loiter error of 0.75–4.5 m. These numbers depend on the environmental conditions, flying style, battery type, and vehicle type. The images obtained from the UAVs, and in combination with surveyed ground control points (GCPs), can be georectified to a pixel resolution between 0.01 and 1 m, and a reprojection error—that is, the difference between the surveyed GPS location of a GCP and the location of the GCP obtained from the georectified image—of O(1 m). The flexibility of rotary wing UAVs provides moderate spatial resolution and high temporal resolution imagery, which are highly suitable to quickly obtain surfzone and beach characteristics in response to storms or for day-to-day beach safety information, as well as scientific pursuits of surfzone kinematics on different spatial and temporal scales, and dispersion and advection estimates of pollutants.

Denotes Open Access content.

Current affiliation: Flanders Hydraulic Research, Antwerp, Belgium.

Current affiliation: Delft University of Technology, Delft, Netherlands.

Corresponding author address: Ronald L. Brouwer, Flanders Hydraulic Research, Berchemlei 115, B-2140 Antwerp, Belgium. E-mail: ronald.brouwer@mow.vlaanderen.be
Save