• Arking, A., 1964: Latitudinal distribution of cloud cover from Tiros III photographs. Science, 143, 569572, doi:10.1126/science.143.3606.569.

    • Search Google Scholar
    • Export Citation
  • Brest, C. L., , and Rossow W. B. , 1992: Radiometric calibration and monitoring of NOAA AVHRR data for ISCCP. Int. J. Remote Sens., 13, 235273, doi:10.1080/01431169208904037.

    • Search Google Scholar
    • Export Citation
  • Brest, C. L., , Rossow W. B. , , and Roiter M. D. , 1997: Update of radiance calibrations for ISCCP. J. Atmos. Oceanic Technol., 14, 10911109, doi:10.1175/1520-0426(1997)014<1091:UORCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Che, N., , and Price J. C. , 1992: Survey of radiometric calibration results and methods for visible and near infrared channels of NOAA-7, -9 and -11 AVHRRs. Remote Sens. Environ., 41, 1927, doi:10.1016/0034-4257(92)90057-Q.

    • Search Google Scholar
    • Export Citation
  • Desormeaux, Y., , Rossow W. B. , , Brest C. L. , , and Campbell G. G. , 1993: Normalization and calibration of geostationary satellite radiances for ISCCP. J. Atmos. Oceanic Technol., 10, 304325, doi:10.1175/1520-0426(1993)010<0304:NACOGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., , Nguyen L. , , and Minnis P. , 2004: On the use of deep convective clouds to calibrate AVHRR data. Earth Observing Systems IX, W. L. Barnes and J. J. Butler, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5542), 281–289, doi:10.1117/12.560047.

    • Search Google Scholar
    • Export Citation
  • Frouin, R., , and Gautier C. , 1987: Calibration of NOAA-7 AVHRR, GOES-5, and GOES-6 VISSR/VAS solar channels. Remote Sens. Environ., 22, 73102, doi:10.1016/0034-4257(87)90028-9.

    • Search Google Scholar
    • Export Citation
  • Fu, R., , Del Genio A. D. , , and Rossow W. B. , 1990: Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiance data. J. Climate, 3, 11291152, doi:10.1175/1520-0442(1990)003<1129:BODCCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., , and Sohn B. J. , 2010: Assessment of the calibration performance of satellite visible channels using cloud targets: Application to Meteosat-8/9 and MTSAT-1R. Atmos. Chem. Phys. Discuss., 10, 12 62912 664, doi:10.5194/acpd-10-12629-2010.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., , Straka W. C. , , Molling C. C. , , Sullivan J. T. , , and Wu X. , 2010: Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens., 31, 64936517, doi:10.1080/01431161.2010.496472.

    • Search Google Scholar
    • Export Citation
  • Hovis, W. A., , Knoll J. S. , , and Smith G. R. , 1985: Aircraft measurements for calibration of an orbiting spacecraft sensor. Appl. Opt., 24, 407410, doi:10.1364/AO.24.000407.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., , Wielicki B. A. , , Yang P. , , Stackhouse P. W. , , Lin B. , , and Young D. F. , 2004: Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: Monitoring the stability of spaceborne measurements and assessing absorption anomaly. IEEE Trans. Geosci. Remote Sens., 42, 25942599, doi:10.1109/TGRS.2004.834765.

    • Search Google Scholar
    • Export Citation
  • Ignatov, A., , Cao C. , , Sullivan J. , , Levin R. , , Wu X. , , and Galvin R. , 2005: The usefulness of in-flight measurements of space count to improve calibration of the AVHRR solar reflectance bands. J. Atmos. Oceanic Technol., 22, 180200, doi:10.1175/JTECH-1691.1.

    • Search Google Scholar
    • Export Citation
  • Kriebel, K. T., 1981: Calibration of the METEOSAT-VIS-channel by airborne measurements. Appl. Opt., 20, 1112, doi:10.1364/AO.20.000011.

    • Search Google Scholar
    • Export Citation
  • Li, C., , Xue Y. , , Liu Q. , , Guang J. , , He X. , , Zhang J. , , Wang T. , , and Liu X. , 2014: Post calibration of channels 1 and 2 of long-term AVHRR data record based on SeaWiFS data and pseudo-invariant targets. Remote Sens. Environ., 150, 104119, doi:10.1016/j.rse.2014.04.020.

    • Search Google Scholar
    • Export Citation
  • Matthews, E., , and Rossow W. B. , 1987: Regional and seasonal variations of surface reflectance at 0.6 μm. J. Climate Appl. Meteor., 26, 170202, doi:10.1175/1520-0450(1987)026<0170:RASVOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molling, C. C., , Heidinger A. K. , , Straka W. C. , , and Wu X. , 2010: Calibrations for AVHRR channels 1 and 2: Review and path towards consensus. Int. J. Remote Sens., 31, 65196540, doi:10.1080/01431161.2010.496473.

    • Search Google Scholar
    • Export Citation
  • Nagaraja Rao, C. R., , and Chen J. , 1995: Inter-satellite calibration linkages for the visible and near-infrared channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9, and -11 spacecraft. Int. J. Remote Sens., 16, 19311942, doi:10.1080/01431169508954530.

    • Search Google Scholar
    • Export Citation
  • Nagaraja Rao, C. R., , Chen J. , , Staylor W. F. , , Abel P. , , Kaufman Y. J. , , Vermote E. , , Rossow W. B. , , and Brest C. , 1993: Degradation of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer on the NOAA-9 spacecraft: Assessment and recommendations for corrections. NOAA Tech. Rep. NESDIS 70, 25 pp. [Available online at http://docs.lib.noaa.gov/noaa_documents/NESDIS/TR_NESDIS/TR_NESDIS_70.pdf.]

  • Neckel, H., , and Labs D. , 1984: The solar radiation between 3300 and 12500 Å. Sol. Phys., 90, 205258, doi:10.1007/BF00173953.

  • Price, J. C., 1987: Radiometric calibration of satellite sensors in the visible and near infrared: History and outlook. Remote Sens. Environ., 22, 39, doi:10.1016/0034-4257(87)90025-3.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., , and Vonder Haar T. H. , 1977: A bispectral method for cloud parameter determination. Mon. Wea. Rev., 105, 446457, doi:10.1175/1520-0493(1977)105<0446:ABMFCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and Lacis A. A. , 1990: Global, seasonal cloud variations from satellite radiance measurements. Part II: Cloud properties and radiative effects. J. Climate, 3, 12041253, doi:10.1175/1520-0442(1990)003<1204:GSCVFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slater, P. N., , Biggar S. F. , , Holm R. G. , , Jackson R. D. , , Mao Y. , , Moran M. S. , , Palmer J. M. , , and Yuan B. , 1987: Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sens. Environ., 22, 1138, doi:10.1016/0034-4257(87)90026-5.

    • Search Google Scholar
    • Export Citation
  • Sohn, B.-J., , Ham S.-H. , , and Yang P. , 2009: Possibility of the visible-channel calibration using deep convective clouds overshooting the TTL. J. Appl. Meteor. Climatol., 48, 22712283, doi:10.1175/2009JAMC2197.1.

    • Search Google Scholar
    • Export Citation
  • Staylor, W. F., 1990: Degradation rates of the AVHRR visible channel for the NOAA 6, 7 and 9 spacecraft. J. Atmos. Oceanic Technol., 7, 411423, doi:10.1175/1520-0426(1990)007<0411:DROTAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thuillier, G., , Hersé M. , , Labs D. , , Foujols T. , , Peetermans W. , , Gillotay D. , , Simon P. C. , , and Mandel H. , 2003: The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions. Sol. Phys., 214, 122, doi:10.1023/A:1024048429145.

    • Search Google Scholar
    • Export Citation
  • Vermote, E., , and Kaufman Y. J. , 1995: Absolute calibration of AVHRR visible and near-infrared channels using ocean and cloud views. Int. J. Remote Sens., 16, 23172340, doi:10.1080/01431169508954561.

    • Search Google Scholar
    • Export Citation
  • Verstraete, M. M., , Pinty B. , , and Dickinson R. F. , 1990: A physical model of the bidirectional reflectance of vegetation canopies 1. Theory. J. Geophys. Res., 95, 11 75511 765, doi:10.1029/JD095iD08p11755.

    • Search Google Scholar
    • Export Citation
  • Whitlock, C. H., and Coauthors, 1990: AVHRR and VISSR satellite instrument calibration results for both cirrus and marine stratocumulus IFO periods. FIRE science results 1988: Proceedings of a conference held in Vail, Colorado, NASA Conf. Publ. 3083, 141145.

  • Wu, A., , Xiong X. , , Doelling D. R. , , Morstad D. , , Angal A. , , and Bhatt R. , 2013: Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR spectral bands’ calibration stability. IEEE Trans. Geosci. Remote Sens., 51, 43304338, doi:10.1109/TGRS.2012.2226588.

    • Search Google Scholar
    • Export Citation
  • Xiong, X., , and Barnes W. , 2006: An overview of MODIS radiometric calibration and characterization. Adv. Atmos. Sci., 23, 6979, doi:10.1007/s00376-006-0008-3.

    • Search Google Scholar
    • Export Citation
  • Xiong, X., , Sun J. , , Barnes W. L. , , and Salomonson V. V. , 2007: Multiyear on-orbit calibration and performance of Terra MODIS reflective solar bands. IEEE Trans. Geosci. Remote Sens., 45, 879889, doi:10.1109/TGRS.2006.890567.

    • Search Google Scholar
    • Export Citation
  • Xiong, X., , Sun J. , , Xie X. , , Barnes W. L. , , and Salomonson V. V. , 2010: On-orbit calibration and performance of Aqua MODIS reflective solar bands. IEEE Trans. Geosci. Remote Sens., 48, 535546, doi:10.1109/TGRS.2009.2024307.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , Rossow W. B. , , Lacis A. A. , , Oinas V. , , and Mishchenko M. I. , 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res.,109, D19105, doi:10.1029/2003JD004457.

  • Zangvil, A., 1975: Temporal and spatial behavior of large-scale disturbances in tropical cloudiness deduced from satellite brightness data. Mon. Wea. Rev., 103, 904920, doi:10.1175/1520-0493(1975)103<0904:TASBOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 5
PDF Downloads 6 6 4

Evaluation of Long-Term Calibrations of the AVHRR Visible Radiances

View More View Less
  • 1 NOAA/CREST, City College of the City University of New York, New York, New York
  • 2 Trinnovim LLC, Arlington, Virginia, and NASA Goddard Institute for Space Studies, New York, New York
© Get Permissions
Restricted access

Abstract

Two systematic calibrations have been compiled for the visible radiances measured by the series of AVHRR instruments flown on the NOAA operational polar weather satellites: one by the International Satellite Cloud Climatology Project (ISCCP), anchored on NASA ER-2 underflights in the 1980s and early 1990s and covering the period 1981–2009, and one by the PATMOS-x project, anchored on comparisons to the MODIS instruments on the Aqua and Terra satellites in the 2000s and covering the period 1979–2010 (this result also includes calibration for the near-IR channels). Both methods have had to extend their anchor calibrations over a long series of instruments using different vicarious approaches, so a comparison provides an opportunity to evaluate how well this extension works by cross-checking the results at the anchor points. The basic result of this comparison is that for the “afternoon” series of AVHRRs, the calibrations agree to within their mutual uncertainties. However, this retrospective evaluation also shows that the representation of the time variations can be simplified. The ISCCP procedure had much more difficulty extending the calibration to the “morning” series of AVHRRs with the calibrations for NOAA-15 and NOAA-17 exceeding the estimated uncertainties. Given the general agreement, a new calibration for all AVHRR visible radiances (except TIROS-N, NOAA-6, NOAA-19, and MetOp-A) is proposed that is based on the average of the best linear fits to the two time records. The estimated uncertainty of these calibrations is ±3% absolute (scaled radiance units).

Corresponding author address: William B. Rossow, CREST, City College of the City University of New York, T-107, Steinman Hall, 140th Street and Convent Avenue, New York, NY 10031. E-mail: wbrossow@ccny.cuny.edu

Abstract

Two systematic calibrations have been compiled for the visible radiances measured by the series of AVHRR instruments flown on the NOAA operational polar weather satellites: one by the International Satellite Cloud Climatology Project (ISCCP), anchored on NASA ER-2 underflights in the 1980s and early 1990s and covering the period 1981–2009, and one by the PATMOS-x project, anchored on comparisons to the MODIS instruments on the Aqua and Terra satellites in the 2000s and covering the period 1979–2010 (this result also includes calibration for the near-IR channels). Both methods have had to extend their anchor calibrations over a long series of instruments using different vicarious approaches, so a comparison provides an opportunity to evaluate how well this extension works by cross-checking the results at the anchor points. The basic result of this comparison is that for the “afternoon” series of AVHRRs, the calibrations agree to within their mutual uncertainties. However, this retrospective evaluation also shows that the representation of the time variations can be simplified. The ISCCP procedure had much more difficulty extending the calibration to the “morning” series of AVHRRs with the calibrations for NOAA-15 and NOAA-17 exceeding the estimated uncertainties. Given the general agreement, a new calibration for all AVHRR visible radiances (except TIROS-N, NOAA-6, NOAA-19, and MetOp-A) is proposed that is based on the average of the best linear fits to the two time records. The estimated uncertainty of these calibrations is ±3% absolute (scaled radiance units).

Corresponding author address: William B. Rossow, CREST, City College of the City University of New York, T-107, Steinman Hall, 140th Street and Convent Avenue, New York, NY 10031. E-mail: wbrossow@ccny.cuny.edu
Save