• Du, Y., , and Vachon P. W. , 2003: Characterization of hurricane eyes in RADARSAT-1 images with wavelet analysis. Can. J. Remote Sens., 29, 491498, doi:10.5589/m03-020.

    • Search Google Scholar
    • Export Citation
  • Furevik, B. R., , and Espedal H. A. , 2002: Wind energy mapping using synthetic aperture radar. Can. J. Remote Sens., 28, 196–204, doi:10.5589/m02-024.

    • Search Google Scholar
    • Export Citation
  • Furevik, B. R., , and Haakenstad H. , 2012: Near-surface marine wind profiles from rawinsonde and NORA10 hindcast. J. Geophys. Res., 117, D23106, doi:10.1029/2012JD018523.

    • Search Google Scholar
    • Export Citation
  • Furevik, B. R., , Johannessen O. M. , , and Sandvik A. D. , 2002: SAR-retrieved wind in polar regions—Comparison with in situ data and atmospheric model output. IEEE Trans. Geosci. Remote Sens., 40, 1720–1732, doi:10.1109/TGRS.2002.802509.

    • Search Google Scholar
    • Export Citation
  • Li, X., , Zhang J. , , Yang X. , , Pichel W. , , DeMaria M. , , Long D. , , and Li Z. , 2013: Tropical cyclone morphology from spaceborne synthetic aperture radar. Bull. Amer. Meteor. Soc., 94, 215–230, doi:10.1175/BAMS-D-11-00211.1.

    • Search Google Scholar
    • Export Citation
  • Lin, W., , Portabella M. , , Stoffelen A. , , Turiel A. , , and Verhoef A. , 2014: Rain identification in ASCAT winds using singularity analysis. IEEE Geosci. Remote Sens. Lett., 11, 1519–1523, doi:10.1109/LGRS.2014.2298095.

    • Search Google Scholar
    • Export Citation
  • Linders, T., , Sætra Ø. , , and Bracegirdle T. J. , 2011: Limited polar low sensitivity to sea-surface temperature. Quart. J. Roy. Meteor. Soc.,137, 58–69, doi:10.1002/qj.718.

  • Moore, G. W. K., , and Vachon P. W. , 2002: A polar low over the Labrador Sea: Interactions with topography and an upper-level potential vorticity anomaly, and an observation by RADARSAT-1 SAR. Geophys. Res. Lett., 29, 1773, doi:10.1029/2001GL014007.

    • Search Google Scholar
    • Export Citation
  • Mouche, A. A., , Collard F. , , Chapron B. , , Dagestad K. , , Guitton G. , , Johannessen J. A. , , Kerbaol V. , , and Hansen M. W. , 2012: On the use of Doppler shift for sea surface wind retrieval from SAR. IEEE Trans. Geosci. Remote Sens., 50, 2901–2909, doi:10.1109/TGRS.2011.2174998.

    • Search Google Scholar
    • Export Citation
  • Noer, G., , and Lien T. , 2010: Dates and positions of polar lows over the Nordic Seas between 2000 and 2010. Norwegian Meteorological Institute Rep. 16/2010, 7 pp. [Available online at http://met.no/filestore/report16_10.pdf.]

  • Noer, G., , Sætra Ø. , , Lien T. , , and Gusdal Y. , 2011: A climatological study of polar lows in the Nordic Seas. Quart. J. Roy. Meteor. Soc.,137, 1762–1772, doi:10.1002/qj.846.

  • NWCSAF, 2014: Algorithm theoretical basis document for cloud top temperature, pressure and height of the NWC/PPS. NWC SAF Rep. NWC/CDOP2/PPS/SMHI/SCI/ATBD/3, Issue 1.0, 35 pp. [Available online at http://www.nwcsaf.org/scidocs/Documentation/NWC-CDOP2-PPS-SMHI-SCI-ATBD-3_v1_0.pdf.]

  • Portabella, M., , Stoffelen A. , , Lin W. , , Turiel A. , , Verhoef A. , , Verspeek J. , , and Ballabrera-Poy J. , 2012: Rain effects on ASCAT-retrieved winds: Toward an improved quality control. IEEE Trans. Geosci. Remote Sens., 50, 2495–2506, doi:10.1109/TGRS.2012.2185933.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. A., , and Turner J. , Eds., 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 612 pp.

    • Search Google Scholar
    • Export Citation
  • Reistad, M., , Breivik Ø. , , Haakenstad H. , , Aarnes O. J. , , Furevik B. R. , , and Bidlot J.-R. , 2011: A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J. Geophys. Res., 116, C05019, doi:10.1029/2010JC006402.

    • Search Google Scholar
    • Export Citation
  • Tang, W., , Liu W. T. , , and Stiles B. W. , 2004: Evaluation of high-resolution ocean surface vector winds measured by QuikScat scatterometer in coastal regions. IEEE Trans. Geosci. Remote Sens., 42, 1762–1769, doi:10.1109/TGRS.2004.831685.

    • Search Google Scholar
    • Export Citation
  • Undén, P., and Coauthors, 2002: HIRLAM-5 scientific documentation. Swedish Meteorological and Hydrological Institute, 144 pp. [Available online at http://www.hirlam.org/index.php/meeting-reports-and-presentations/doc_download/308-unden-et-al-2002.]

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi:10.1256/qj.04.176.

  • Vachon, P. W., , and Wolfe J. , 2011: C-band cross-polarization wind speed retrieval. IEEE Geosci. Remote Sens. Lett., 8, 456–459, doi:10.1109/LGRS.2010.2085417.

    • Search Google Scholar
    • Export Citation
  • Verhoef, A., , and Stoffelen A. , 2013: ASCAT coastal winds validation report. Version 1.5, Royal Netherlands Meteorological Institute and Ocean and Sea Ice SAF Tech. Note SAF/OSI/CDOP/KNMI/TEC/RP/176, version 1.5, 19 pp. [Available online at http://www.knmi.nl/scatterometer/publications/pdf/ASCAT_validation_coa.pdf.]

  • Vogelzang, J., , Stoffelen A. , , Verhoef A. , , and Figa-Saldaña J. , 2011: On the quality of high-resolution scatterometer winds. J. Geophys. Res., 116, C10033, doi:10.1029/2010JC006640.

    • Search Google Scholar
    • Export Citation
  • Yang, X., , Li X. , , Pichel W. G. , , and Li Z. , 2011: Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model. IEEE Trans. Geosci. Remote Sens., 49, 4743–4750, doi:10.1109/TGRS.2011.2159802.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., , and Perrie W. , 2012: Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes. Bull. Amer. Meteor. Soc., 93,531541, doi:10.1175/BAMS-D-11-00001.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 19
PDF Downloads 12 12 10

ASAR and ASCAT in Polar Low Situations

View More View Less
  • 1 Norwegian Meteorological Institute, Oslo, and Geophysical Institute, University of Bergen, Bergen, Norway
  • 2 Norwegian Meteorological Institute, Oslo, Norway
© Get Permissions
Restricted access

Abstract

Forecasting and monitoring polar lows are, to a large degree, based on satellite observations from passive radiometers and from scatterometer winds in addition to synoptic observations and numerical models. Synthetic aperture radar (SAR) brings higher resolution compared to other remotely sensed sources of ocean wind, such as scatterometer data and passive microwave wind products. The added information in polar low situations from SAR and the increased-resolution scatterometer wind fields are investigated. Statistically, higher variability in the MetOp Advanced Scatterometer (ASCAT) wind is clearly found during polar low situations compared to all situations. Slightly more variability is also seen in the ASCAT 12.5-km wind product compared to the operational European Centre for Medium-Range Weather Forecasts (ECMWF) model surface winds. In two analyzed polar low cases, Environmental Satellite (Envisat) Advanced SAR (ASAR) images reveal numerous interesting features, such as the sharp fronts and the location and strength of the strongest wind field in the polar low. It is likely that if SAR images are available to operational weather forecasting, that it can in some cases lead to earlier detection of polar lows. However, a reliable wind field from SAR is still needed.

Corresponding author address: Birgitte Rugaard Furevik, Norwegian Meteorological Institute, Allégaten 70, 5007 Bergen, Norway. E-mail: birgitte.furevik@met.no

Abstract

Forecasting and monitoring polar lows are, to a large degree, based on satellite observations from passive radiometers and from scatterometer winds in addition to synoptic observations and numerical models. Synthetic aperture radar (SAR) brings higher resolution compared to other remotely sensed sources of ocean wind, such as scatterometer data and passive microwave wind products. The added information in polar low situations from SAR and the increased-resolution scatterometer wind fields are investigated. Statistically, higher variability in the MetOp Advanced Scatterometer (ASCAT) wind is clearly found during polar low situations compared to all situations. Slightly more variability is also seen in the ASCAT 12.5-km wind product compared to the operational European Centre for Medium-Range Weather Forecasts (ECMWF) model surface winds. In two analyzed polar low cases, Environmental Satellite (Envisat) Advanced SAR (ASAR) images reveal numerous interesting features, such as the sharp fronts and the location and strength of the strongest wind field in the polar low. It is likely that if SAR images are available to operational weather forecasting, that it can in some cases lead to earlier detection of polar lows. However, a reliable wind field from SAR is still needed.

Corresponding author address: Birgitte Rugaard Furevik, Norwegian Meteorological Institute, Allégaten 70, 5007 Bergen, Norway. E-mail: birgitte.furevik@met.no
Save