• Antonita, T. M., , Ramkumar G. , , Kumar K. K. , , Appu K. S. , , and Nambhoodiri K. V. S. , 2007: A quantitative study on the role of gravity waves in driving the tropical Stratospheric Semiannual Oscillation. J. Geophys. Res.,112, D12115, doi:10.1029/2006JD008250.

  • Baumgaertner, A. J. G., 2007: Observations of middle atmosphere dynamics over Antarctica. Ph.D. thesis, University of Canterbury, 201 pp.

  • Baumgaertner, A. J. G., , McDonald A. J. , , and Fraser G. J. , 2006: High resolution wind measurements in the mesosphere with the Scott Base medium-frequency radar. Proceedings of the 13th Electronics New Zealand Conference, R. Y. Webb and M. P. Hayes, Eds., Electronics New Zealand Inc., 184–189.

  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp.

  • Drob, D. P., and Coauthors, 2008: An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res., 113, A12304, doi:10.1029/2008JA013668.

    • Search Google Scholar
    • Export Citation
  • Ern, M., , Preusse P. , , Krebsbach M. , , Mlynczak M. G. , , and Russell J. M. III, 2008: Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys., 8, 845869, doi:10.5194/acp-8-845-2008.

    • Search Google Scholar
    • Export Citation
  • Fan, Z.-Q., , Sheng Z. , , Wan L. , , Shi H.-Q. , , and Jiang Y. , 2013: Comprehensive assessment of the accuracy of the data from near space meteorological rocket sounding. Acta Phys. Sin., 62, 199601, doi:10.7498/aps.62.199601.

    • Search Google Scholar
    • Export Citation
  • French, W. J. R., , and Mulligan F. J. , 2010: Stability of temperatures from TIMED/SABER v1. 07 (2002–2009) and Aura/MLS v2. 2 (2004–2009) compared with OH (6-2) temperatures observed at Davis Station, Antarctica. Atmos. Chem. Phys., 10, 11 43911 446, doi:10.5194/acp-10-11439-2010.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , Marsh D. R. , , Kinnison D. E. , , Boville B. A. , , and Sassi F. , 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Guo, P., , Kuo Y. H. , , Sokolovskiy S. V. , , and Lenschow D. H. , 2011: Estimating atmospheric boundary layer depth using COSMIC radio occultation data. J. Atmos. Sci., 68, 17031713, doi:10.1175/2011JAS3612.1.

    • Search Google Scholar
    • Export Citation
  • Hedin, A. E., 1987: MSIS-86 thermospheric model. J. Geophys. Res., 92, 46494662, doi:10.1029/JA092iA05p04649.

  • Hedin, A. E., 1991: Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res., 96, 11591172, doi:10.1029/90JA02125.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., , and Shepherd T. G. , 2009: Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci., 2, 687691, doi:10.1038/ngeo604.

    • Search Google Scholar
    • Export Citation
  • Jiang, G. Y., , Xu J. Y. , , Shi D. B. , , Wei F. , , and Wang L. Z. , 2011: Observations of the first meteorological rocket of the Meridian Space Weather Monitoring Project. Chin. Sci. Bull., 56, 21312137, doi:10.1007/s11434-011-4537-5.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., , Sheng Z. , , and Shi H. Q. , 2014: Modes of zonal mean temperature variability 20–100 km from the TIMED/SABER observations. Ann. Geophys., 32, 285–292, doi:10.5194/angeo-32-285-2014.

    • Search Google Scholar
    • Export Citation
  • Knoedler, A. J., 2008: Lowering the high ground using near-space vehicles for persistent ISR. Mil. Technol.,32, 178–187.

  • Ladstädter, F., , Steiner A. K. , , Foelsche U. , , Haimberger L. , , Tavolato C. , , and Kirchengast G. , 2011: An assessment of differences in lower stratospheric temperature records from (A)MSU, radiosondes, and GPS radio occultation. Atmos. Meas. Tech., 4, 19651977, doi:10.5194/amt-4-1965-2011.

    • Search Google Scholar
    • Export Citation
  • Lomb, N. R., 1976: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39, 447462, doi:10.1007/BF00648343.

    • Search Google Scholar
    • Export Citation
  • Luers, J. K., 1990: Estimating the temperature error of the radiosonde rod thermistor under different environments. J. Atmos. Oceanic Technol., 7, 882895, doi:10.1175/1520-0426(1990)007<0882:ETTEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., , and Belmont A. D. , 1976: Diurnal stratospheric tide in meridional wind, 30 to 60 km by season. J. Atmos. Sci., 33, 315320, doi:10.1175/1520-0469(1976)033<0315:DSTIMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Picone, J. M., , Hedin A. E. , , Drob D. P. , , and Aikin A. C. , 2002: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res., 107, 1468, doi:10.1029/2002JA009430.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1966: Zonal wind behavior in the equatorial stratosphere and lower mesosphere. J. Geophys. Res., 71, 42234233, doi:10.1029/JZ071i018p04223.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Sasi, M. N., and Coauthors, 2003: A study of equatorial wave characteristics using rockets, balloons, lidar and radar. Adv. Space Res., 32, 813818, doi:10.1016/S0273-1177(03)00412-5.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., , Kinnison D. , , Boville B. A. , , Garcia R. R. , , and Roble R. , 2004: Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434.

    • Search Google Scholar
    • Export Citation
  • Scargle, J. D., 1982: Studies in astronomical time series analysis. II—Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263, 835853, doi:10.1086/160554.

    • Search Google Scholar
    • Export Citation
  • Scheiben, D., , Schanz A. , , Tschanz B. , , and Kämpfer N. , 2013: Diurnal variations in middle atmospheric water vapor by ground-based microwave radiometry. Atmos. Chem. Phys. Discuss., 13, 38593880, doi:10.5194/acpd-13-3859-2013.

    • Search Google Scholar
    • Export Citation
  • Sica, R. J., and Coauthors, 2008: Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements. Atmos. Chem. Phys., 8, 3562, doi:10.5194/acp-8-35-2008.

    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., , and Kirchengas G. , 2000: Gravity wave spectra from GPS/MET occultation observations. J. Atmos. Oceanic Technol., 17, 495503, doi:10.1175/1520-0426(2000)017<0495:GWSFGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tyrlis, E., , Škerlak B. , , Sprenger M. , , Wernli H. , , Zittis G. , , and Lelieveld J. , 2014: On the linkage between the Asian summer monsoon and tropopause fold activity over the eastern Mediterranean and the Middle East. J. Geophys. Res. Atmos., 119, 32023221, doi:10.1002/2013JD021113.

    • Search Google Scholar
    • Export Citation
  • Wang, B.-R., , Liu X.-Y. , , and Wang J.-K. , 2013: Assessment of COSMIC radio occultation retrieval product using global radiosonde data. Atmos. Meas. Tech., 6, 10731083, doi:10.5194/amt-6-1073-2013.

    • Search Google Scholar
    • Export Citation
  • Wang, R., , Zhang S. D. , , Yang H. G. , , and Huang K. M. , 2012: Characteristics of mid-latitude planetary waves in the lower atmosphere derived from radiosonde data. Ann. Geophys., 30, 14631477, doi:10.5194/angeo-30-1463-2012.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., , Fu E. , , Silcock D. , , Wang Y. , , and Kuleshov Y. , 2011: An investigation of atmospheric temperature profiles in the Australian region using collocated GPS radio occultation and radiosonde data. Atmos. Meas. Tech., 4, 20872092, doi:10.5194/amt-4-2087-2011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 11
PDF Downloads 17 17 11

A Study of Atmospheric Temperature and Wind Profiles Obtained from Rocketsondes in the Chinese Midlatitude Region

View More View Less
  • 1 College of Meteorology and Oceanography, People’s Liberation Army University of Science and Technology, Nanjing, China
  • 2 620 Science and Engineering Office of Jiangxi, Nanchang, China
  • 3 College of Meteorology and Oceanography, People’s Liberation Army University of Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

In November 2004, five TK-1 meteorological rockets were launched at Jiuquan Satellite Launch Center in China for the first time. The observations are compared with models, reanalysis, and satellite datasets. The mean differences of temperature between the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and the rocketsondes are about 0.7–2.4 K in the stratosphere and −6 K in the mesosphere. The temperature biases between the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar, Exosphere (NRLMSISE-00)/Whole Atmosphere Community Climate Model (WACCM), and the rocketsondes are small (~1–2 K) in the lower stratosphere and largest near the stratopause. Both models strongly overestimated the temperature by 11 K on average. The discrepancies of horizontal winds between the Horizontal Wind Model 07 (HWM07)/WACCM and the rocketsondes reached the maximum in the upper stratosphere and the lower mesosphere. The westerly observed zonal winds and equatorward meridional winds were two interesting phenomena that led to large biases in the upper stratosphere, which need further study.

Corresponding author address: Zheng Sheng, College of Meteorology and Oceanography, PLA University of Science and Technology, No. 60 Shuanglong St., Nanjing, Jiangsu 211101, China. E-mail: 19994035@sina.com; krisjiangyu@gmail.com

Abstract

In November 2004, five TK-1 meteorological rockets were launched at Jiuquan Satellite Launch Center in China for the first time. The observations are compared with models, reanalysis, and satellite datasets. The mean differences of temperature between the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and the rocketsondes are about 0.7–2.4 K in the stratosphere and −6 K in the mesosphere. The temperature biases between the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar, Exosphere (NRLMSISE-00)/Whole Atmosphere Community Climate Model (WACCM), and the rocketsondes are small (~1–2 K) in the lower stratosphere and largest near the stratopause. Both models strongly overestimated the temperature by 11 K on average. The discrepancies of horizontal winds between the Horizontal Wind Model 07 (HWM07)/WACCM and the rocketsondes reached the maximum in the upper stratosphere and the lower mesosphere. The westerly observed zonal winds and equatorward meridional winds were two interesting phenomena that led to large biases in the upper stratosphere, which need further study.

Corresponding author address: Zheng Sheng, College of Meteorology and Oceanography, PLA University of Science and Technology, No. 60 Shuanglong St., Nanjing, Jiangsu 211101, China. E-mail: 19994035@sina.com; krisjiangyu@gmail.com
Save