• Bréon, F. M., and Coauthors, 2002: Scientific results from the Polarization and Directionality of the Earth’s Reflectances (POLDER). Adv. Space Res., 30, 23832386, doi:10.1016/S0273-1177(02)80282-4.

    • Search Google Scholar
    • Export Citation
  • Cairns, B., , Russell E. E. , , and Travis L. D. , 1999: Research scanning polarimeter: Calibration and ground-based measurements. Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein and D. B. Chenault, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 3754), 186, doi:10.1117/12.366329.

    • Search Google Scholar
    • Export Citation
  • Cairns, B., , Russell E. E. , , LaVeigne J. D. , , and Tennant P. M. W. , 2003: Research scanning polarimeter and airborne usage for remote sensing of aerosols. Polarization Science and Remote Sensing, J. A. Shaw and J. Scott Tyo, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5158), 33, doi:10.1117/12.518320.

    • Search Google Scholar
    • Export Citation
  • Campion, D. C., , Dugan J. P. , , Piotrowski C. C. , , and Evans A. G. , 2002: Direct geo-referencing techniques for rapid positioning of targets and environmental products using tactical grade airborne imaging data. OCEANS ’02 MTS/IEEE: Marine Frontiers; Reflections of the Past, Visions of the Future, Vol. 3, IEEE, 1603–1608.

  • Chowdhary, J., , Cairns B. , , Mishchenko M. , , and Travis L. , 2001: Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter. Geophys. Res. Lett., 28, 243246, doi:10.1029/2000GL011783.

    • Search Google Scholar
    • Export Citation
  • Collignon, A., , Maes F. , , Delaere D. , , Vandermeulen D. , , Suetens P. , , and Marchal G. , 1995: Automated multi-modality medical image registration using information theory. Information Processing in Medical Imaging, Y. Bizais, C. Barillot, and R. Di Paola, Eds., Computational Imaging and Vision, Vol. 3, Kluwer Academic Publishers, 263274.

  • Cramer, M., 2008: The EuroSDR approach on digital airborne camera calibration and certification. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, J. Chen, J. Jiang, and S. Nayak, Eds., Vol. XXXVII, Part B4, ISPRS, 1753–1758.

  • Daniels, A., , Boreman G. , , Durcharme A. , , and Sair E. , 1995: Random transparency targets for modulation transfer measurements in the visible and infrared regions. Opt. Eng., 34, 860868, doi:10.1117/12.190433.

    • Search Google Scholar
    • Export Citation
  • Deschamps, P.-Y., , Breon F. M. , , Leroy M. , , Podaire A. , , Bricaud A. , , Buriez J. C. , , and Seze G. , 1994: The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32, 598615, doi:10.1109/36.297978.

    • Search Google Scholar
    • Export Citation
  • Diner, D. J., and Coauthors, 1998: The Airborne Multi-angle Imaging SpectroRadiometer (AirMISR): Instrument description and first results. IEEE Trans. Geosci. Remote Sens., 36, 13391349, doi:10.1109/36.701083.

    • Search Google Scholar
    • Export Citation
  • Diner, D. J., and Coauthors, 2010: First results from a dual photoelastic-modulator-based polarimetric camera. Appl. Opt., 49, 29292946, doi:10.1364/AO.49.002929.

    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., , and Piotrowski C. C. , 2003: Surface current measurements using visible image time series. Remote Sens. Environ., 84, 309319, doi:10.1016/S0034-4257(02)00116-5.

    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., , and Piotrowski C. C. , 2012: Measuring currents in a coastal inlet by advection of turbulent eddies in airborne optical imagery. J. Geophys. Res., 117, C03020, doi:10.1029/2011JC007600.

    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., and Coauthors, 2001a: Airborne optical spotlight system for remote sensing of ocean waves. J. Atmos. Oceanic Technol., 18, 12671276, doi:10.1175/1520-0426(2001)018<1267:AOSFRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., , Piotrowski C. C. , , and Williams J. Z. , 2001b: Water depth and current retrievals from airborne optical measurements of surface gravity wave dispersion. J. Geophys. Res., 106, 16 90316 915, doi:10.1029/2000JC000369.

    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., , Piotrowski C. C. , , Williams J. Z. , , and Holland K. T. , 2001c: Space-time imaging of shoaling waves and surf. Proceedings: Ocean Wave Measurement and Analysis, B. L. Edge and J. M. Hemsley, Eds., ASCE, 258267.

  • Evans, A. G., , Bhapkar U. V. , , Cunningham J. P. , , Hermann B. R. , , Dugan J. P. , , Williams J. Z. , , Campion D. C. , , and Colombo O. L. , 2000: Fusion of reference-aided GPS, imagery and inertial information for airborne geolocation. Proc. 13th Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2000), Salt Lake City, UT, Institute of Navigation, 1703–1712.

  • Fessenkoff, B., 1935: Détermination de la Polarisation de la Couronne Solaire. Astron. Zh., 12, 309321.

  • Fougnie, B., , Bracco G. , , Lafrance B. , , Ruffel C. , , Hagolle O. , , and Tinel C. , 2007: PARASOL in-flight calibration and performance. Appl. Opt., 46, 54355451, doi:10.1364/AO.46.005435.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., 1971: Circular polarization of sunlight reflected by clouds. J. Atmos. Sci., 28, 15151516, doi:10.1175/1520-0469(1971)028<1515:CPOSRB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hecht, E., 2001: Optics. 4th ed. Addison-Wesley, 680 pp.

  • Hooper, B. A., , Williams J. Z. , , Dugan J. P. , , Goldman C. , , Yi M. , , and Campion D. , 2005: Time-series imaging of ocean waves with an airborne RGB and NIR sensor. Oceans 2005: Proceedings of MTS/IEEE, IEEE, 1–8.

  • Hooper, B. A., , Piotrowski C. , , Vierra K. , , Baxter R. , , Williams J. Z. , , Dugan J. , , MacMahan J. , , and Swick W. , 2008: Current measurements from an Airborne Remote Optical Spotlight System Imaging Multispectral Polarimeter (AROSS-MSP). Eos, Trans. Amer. Geophys. Union,89 (Fall Meeting Suppl.), Abstract OS13D-1223.

  • Hooper, B. A., , Baxter B. , , Piotrowski C. , , Williams J. Z. , , and Dugan J. , 2009: An airborne imaging multispectral polarimeter (AROSS-MSP). OCEANS 2009: MTS/IEEE Biloxi—Marine Technology for Our Future: Global and Local Challenges, IEEE, 1–10.

  • Jones, S. H., , Iannarilli F. J. Jr., , Kebabian P. L. , , and Conant J. A. , 2005: The Hyperspectral Polarimeter for Aerosol Retrievals (HySPAR): A new instrument for passive remote sensing of aerosols. IEEE Workshop on Remote Sensing of Atmospheric Aerosols, IEEE, 5159.

  • Matchko, R. M., , and Gerhart G. R. , 2005: Polarization measurements using a commercial off-the-shelf digital camera. Opt. Eng., 44, 023604, doi:10.1117/1.1847655.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., , Videen G. , , Rosenbush V. K. , , and Yatskiv Y. S. , 2011: Polarimetric detection, characterization, and remote sensing. J. Quant. Spectrosc. Radiat. Transfer, 112, 20422045, doi:10.1016/j.jqsrt.2011.04.004.

    • Search Google Scholar
    • Export Citation
  • Persons, C. M., , Chenault D. B. , , Jones M. W. , , Spradley K. D. , , Gulley M. G. , , and Farlow C. A. , 2002: Automated registration of polarimetric imagery using Fourier transform techniques. Polarization Measurement, Analysis, and Applications V, D. H. Goldstein and D. B. Chenault, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4819), 107, doi:10.1117/12.450935.

  • Pezzaniti, J. L, , Chenault D. , , Roche M. , , Reinhardt J. , , and Schultz H. , 2009: Wave slope measurement using imaging polarimetry. Ocean Sensing and Monitoring, W. Hou, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 7317), 73170B, doi:10.1117/12.819031.

  • Piotrowski, C. C., , and Dugan J. P. , 2002: Accuracy of bathymetry and current retrievals from airborne optical time series imaging of shoaling waves. IEEE Trans. Geosci. Remote Sens., 40, 26062618, doi:10.1109/TGRS.2002.807578.

    • Search Google Scholar
    • Export Citation
  • Plass, G. N., , Kattawar G. W. , , and Hitzfelder S. J. , 1976: Multiple scattered radiation emerging from Rayleigh and continental haze layers. 2: Ellipticity and direction of polarization. Appl. Opt., 15, 10031011, doi:10.1364/AO.15.001003.

    • Search Google Scholar
    • Export Citation
  • Prosch, T., , Hennings D. , , and Raschke E. , 1983: Video polarimetry: A new imaging technique in atmospheric science. Appl. Opt., 22, 13601363, doi:10.1364/AO.22.001360.

    • Search Google Scholar
    • Export Citation
  • Schott, J. R., 2009: Fundamentals of Polarimetric Remote Sensing. Tutorial Texts in Optical Engineering, Vol. TT81, SPIE Press, 268 pp.

  • Smith, M. H., , Woodruff J. B. , , and Howe J. D. , 1999: Beam wander considerations in imaging polarimetry. Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein and D. B. Chenault, Eds., International Society for Optical Engineering (SPIE Proc., Vol. 3754), 50, doi:10.1117/12.366359.

    • Search Google Scholar
    • Export Citation
  • Sparks, W. B., and Coauthors, 2009: Detection of circular polarization in light scattered from photosynthetic microbes. Proc. Natl. Acad. Sci. USA, 106, 78167821, doi:10.1073/pnas.0810215106.

    • Search Google Scholar
    • Export Citation
  • Tsai, R. Y., 1987: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Rob. Autom., 3, 323344, doi:10.1109/JRA.1987.1087109.

    • Search Google Scholar
    • Export Citation
  • Viola, P., , and Wells W. M. III, 1995: Alignment by maximization of mutual information. Fifth International Conference on Computer Vision: Proceedings, IEEE, 1623.

  • Zappa, C. J., , Banner M. L. , , Schultz H. , , Corrada-Emmanuel A. , , Wolff L. B. , , and Yalcin J. , 2008: Retrieval of short ocean wave slope using polarimetric imaging. Meas. Sci. Technol., 19, 055503, doi:10.1088/0957-0233/19/5/055503.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 13
PDF Downloads 16 16 9

Airborne Spectral Polarimeter for Ocean Wave Research

View More View Less
  • 1 Areté Associates, Arlington, Virginia
© Get Permissions
Restricted access

Abstract

The Airborne Remote Optical Spotlight System (AROSS) family of sensors consists of airborne imaging systems that provide passive, high-dynamic range, time series image data and has been used successfully to characterize currents and bathymetry of nearshore ocean, tidal flat, and riverine environments. AROSS–multispectral polarimeter (AROSS-MSP) is a 12-camera system that extends this time series capability to simultaneous color and polarization measurements for the full linear polarization of the imaged scene in red, green, and blue, and near-infrared (RGB–NIR) wavelength bands. Color and polarimetry provide unique information for retrieving dynamic environmental parameters over a larger area (square kilometers) than is possible with typical in situ measurements. This particular field of optical remote sensing is developing rapidly, and simultaneous color and polarimetric data are expected to enable the development of a number of additional important environmental data products, such as the improved ability to image the subsurface water column or maximizing wave contrast to improve oceanographic parameter retrievals of wave spectra and wave heights.

One of the main obstacles to providing good-quality polarimetric image data from a multicamera system is the ability to accurately merge imagery from the cameras to a subpixel level. This study shows that the imagery from AROSS-MSP can be merged to an accuracy better than one-twentieth of a pixel, comparing two different automated algorithmic techniques. This paper describes the architecture of AROSS-MSP, the approach for providing simultaneous color and polarization imagery in space and time, an error analysis to characterize the measurements, and example color and polarization data products from ocean wave imagery.

Current affiliation: TASC, Inc., Chantilly, Virginia.

Deceased.

Current affiliation: SGT, Inc., Greenbelt, Maryland.

Corresponding author address: Brett A. Hooper, 5354 Lake Normandy Court, Fairfax, VA 22030. E-mail: bhooplah@gmail.com

Abstract

The Airborne Remote Optical Spotlight System (AROSS) family of sensors consists of airborne imaging systems that provide passive, high-dynamic range, time series image data and has been used successfully to characterize currents and bathymetry of nearshore ocean, tidal flat, and riverine environments. AROSS–multispectral polarimeter (AROSS-MSP) is a 12-camera system that extends this time series capability to simultaneous color and polarization measurements for the full linear polarization of the imaged scene in red, green, and blue, and near-infrared (RGB–NIR) wavelength bands. Color and polarimetry provide unique information for retrieving dynamic environmental parameters over a larger area (square kilometers) than is possible with typical in situ measurements. This particular field of optical remote sensing is developing rapidly, and simultaneous color and polarimetric data are expected to enable the development of a number of additional important environmental data products, such as the improved ability to image the subsurface water column or maximizing wave contrast to improve oceanographic parameter retrievals of wave spectra and wave heights.

One of the main obstacles to providing good-quality polarimetric image data from a multicamera system is the ability to accurately merge imagery from the cameras to a subpixel level. This study shows that the imagery from AROSS-MSP can be merged to an accuracy better than one-twentieth of a pixel, comparing two different automated algorithmic techniques. This paper describes the architecture of AROSS-MSP, the approach for providing simultaneous color and polarization imagery in space and time, an error analysis to characterize the measurements, and example color and polarization data products from ocean wave imagery.

Current affiliation: TASC, Inc., Chantilly, Virginia.

Deceased.

Current affiliation: SGT, Inc., Greenbelt, Maryland.

Corresponding author address: Brett A. Hooper, 5354 Lake Normandy Court, Fairfax, VA 22030. E-mail: bhooplah@gmail.com
Save