• Bertin, X., , Fortunato A. , , and Oliveira A. , 2009: A modeling-based analysis of processes driving wave-dominated inlets. Cont. Shelf Res., 29, 819834, doi:10.1016/j.csr.2008.12.019.

    • Search Google Scholar
    • Export Citation
  • Catalán, P. A., , Haller M. C. , , Holman R. A. , , and Plant W. J. , 2011: Optical and wave detection of wave breaking in the surf zone. IEEE Trans. Geosci. Remote Sens., 49, 18791893, doi:10.1109/TGRS.2010.2095864.

    • Search Google Scholar
    • Export Citation
  • Catalán, P. A., , Haller M. C. , , and Plant W. J. , 2014: Microwave backscattering from surf zone waves. J. Geophys. Res. Oceans,119, 3098–3120, doi:10.1002/2014JC009880.

    • Search Google Scholar
    • Export Citation
  • Dodet, G., , Bertin X. , , Bruneau N. , , Fortunato A. B. , , Nahon A. , , and Roland A. , 2013: Wave-current interactions in a wave-dominated tidal inlet. J. Geophys. Res. Oceans, 118, 15871605, doi:10.1002/jgrc.20146.

    • Search Google Scholar
    • Export Citation
  • Farquharson, G., , Frasier S. J. , , Raubenheimer B. , , and Elgar S. , 2005: Microwave radar cross sections and Doppler velocities measured in the surf zone. J. Geophys. Res., 110, C12024, doi:10.1029/2005JC003022.

    • Search Google Scholar
    • Export Citation
  • Flores, R. P., , Catalán P. A. , , and Haller M. C. , 2013: Incorporating remotely-sensed roller properties into set-up estimations for random wave conditions. Proc. Seventh Int. Conf. on Coastal Dynamics, Arcachon, France, CNRS, 615626.

  • Gommenginger, C. P., , Ward N. P. , , Fisher G. J. , , Robinson I. S. , , and Boxall S. R. , 2000: Quantitative microwave backscatter measurements from the ocean surface using digital marine radar images. J. Atmos. Oceanic Technol., 17, 665678, doi:10.1175/1520-0426(2000)017<0665:QMBMFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haller, M. C., , and Lyzenga D. R. , 2003: Comparison of radar and video observations of shallow water breaking waves. IEEE Trans. Geosci. Remote Sens., 41, 832844, doi:10.1109/TGRS.2003.810695.

    • Search Google Scholar
    • Export Citation
  • Haller, M. C., , and Catalán P. A. , 2009: Remote sensing of wave roller lengths in the laboratory. J. Geophys. Res., 114, C07022, doi:10.1029/2008JC005185.

    • Search Google Scholar
    • Export Citation
  • Holman, R., , and Haller M. C. , 2013: Remote sensing of the nearshore. Annu. Rev. Mar. Sci., 5, 95113, doi:10.1146/annurev-marine-121211-172408.

    • Search Google Scholar
    • Export Citation
  • Holman, R., , Plant N. , , and Holland T. , 2013: cBathy: A robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. Oceans, 118, 25952609, doi:10.1002/jgrc.20199.

    • Search Google Scholar
    • Export Citation
  • Janssen, T. T., , and Battjes J. A. , 2007: A note on wave energy dissipation over steep beaches. Coastal Eng., 54, 711716, doi:10.1016/j.coastaleng.2007.05.006.

    • Search Google Scholar
    • Export Citation
  • Kirby, J. T., 1984: A note on linear surface wave-current interaction over slowly varying topography. J. Geophys. Res., 89, 745747, doi:10.1029/JC089iC01p00745.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., , and Stewart R. W. , 1964: Radiation stresses in water waves; A physical discussion, with applications. Deep-Sea Res. Oceanogr. Abstr., 11, 529562, doi:10.1016/0011-7471(64)90001-4.

    • Search Google Scholar
    • Export Citation
  • Malhadas, M., , Leitão P. , , Silva A. , , and Neves R. , 2009: Effect of coastal waves on sea level in Óbidos Lagoon, Portugal. Cont. Shelf Res., 29, 12401250, doi:10.1016/j.csr.2009.02.007.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. A., , Poulter E. M. , , and Smith M. J. , 1998: S band Doppler radar measurements of bathymetry, wave energy fluxes, and dissipation across an offshore bar. J. Geophys. Res., 103, 18 77918 789, doi:10.1029/98JC00447.

    • Search Google Scholar
    • Export Citation
  • Orescanin, M., , Raubenheimer B. , , and Elgar S. , 2014: Observations of wave effects on inlet circulation. Cont. Shelf Res., 82, 3742, doi:10.1016/j.csr.2014.04.010.

    • Search Google Scholar
    • Export Citation
  • Svendsen, I. A., 2006: Introduction to Nearshore Hydrodynamics. Advanced Series on Ocean Engineering, Vol. 24, World Scientific, 722 pp.

  • Trizna, D., , Hansen J. P. , , Hwang P. , , and Wu J. , 1991: Laboratory studies of sea spikes at low grazing angles. J. Geophys. Res., 96, 12 52912 537, doi:10.1029/91JC00705.

    • Search Google Scholar
    • Export Citation
  • Wargula, A., , Raubenheimer B. , , and Elgar S. , 2014: Wind-driven along-channel subtidal flows in a well-mixed ocean inlet. J. Geophys. Res. Oceans, 119, 29873001, doi:10.1002/2014JC009839.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184194.

  • Young, I. R., , Rosenthal W. , , and Ziemer F. , 1985: A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents. J. Geophys. Res., 90, 10491059, doi:10.1029/JC090iC01p01049.

    • Search Google Scholar
    • Export Citation
  • Zippel, S., , and Thomson J. , 2015: Wave breaking and turbulence at a tidal inlet. J. Geophys. Res. Oceans, doi:10.1002/2014JC010025, in press.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 2
PDF Downloads 5 5 1

Radar Remote Sensing Estimates of Waves and Wave Forcing at a Tidal Inlet

View More View Less
  • 1 School of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon
  • 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • 3 School of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon
© Get Permissions
Restricted access

Abstract

The time and space variability of wave transformation through a tidal inlet is investigated with radar remote sensing. The frequency of wave breaking and the net wave breaking dissipation at high spatial resolution is estimated using image sequences acquired with a land-based X-band marine radar. Using the radar intensity data, transformed to normalized radar cross section σ0, the temporal and spatial distributions of wave breaking are identified using a threshold developed via the data probability density function. In addition, the inlet bathymetry is determined via depth inversion of the radar-derived frequencies and wavenumbers of the surface waves using a preexisting algorithm (cBathy). Wave height transformation is calculated through the 1D cross-shore energy flux equation incorporating the radar-estimated breaking distribution and bathymetry. The accuracy of the methodology is tested by comparison with in situ wave height observations over a 9-day period, obtaining correlation values R = 0.68 to 0.96, and root-mean-square errors from 0.05 to 0.19 m. Predicted wave forcing, computed as the along-inlet gradient of the cross-shore radiation stress was onshore during high-wave conditions, in good agreement (R = 0.95) with observations.

Corresponding author address: Guillermo M. Díaz Méndez, School of Civil and Construction Engineering, Oregon State University, 101 Kearney Hall, Corvallis, OR 97331. E-mail: guillermo.diaz@oregonstate.edu

Abstract

The time and space variability of wave transformation through a tidal inlet is investigated with radar remote sensing. The frequency of wave breaking and the net wave breaking dissipation at high spatial resolution is estimated using image sequences acquired with a land-based X-band marine radar. Using the radar intensity data, transformed to normalized radar cross section σ0, the temporal and spatial distributions of wave breaking are identified using a threshold developed via the data probability density function. In addition, the inlet bathymetry is determined via depth inversion of the radar-derived frequencies and wavenumbers of the surface waves using a preexisting algorithm (cBathy). Wave height transformation is calculated through the 1D cross-shore energy flux equation incorporating the radar-estimated breaking distribution and bathymetry. The accuracy of the methodology is tested by comparison with in situ wave height observations over a 9-day period, obtaining correlation values R = 0.68 to 0.96, and root-mean-square errors from 0.05 to 0.19 m. Predicted wave forcing, computed as the along-inlet gradient of the cross-shore radiation stress was onshore during high-wave conditions, in good agreement (R = 0.95) with observations.

Corresponding author address: Guillermo M. Díaz Méndez, School of Civil and Construction Engineering, Oregon State University, 101 Kearney Hall, Corvallis, OR 97331. E-mail: guillermo.diaz@oregonstate.edu
Save