Intercomparison of Attenuation Correction Methods for the GPM Dual-Frequency Precipitation Radar

Shinta Seto Graduate School of Engineering, Nagasaki University, Nagasaki, Japan

Search for other papers by Shinta Seto in
Current site
Google Scholar
PubMed
Close
and
Toshio Iguchi National Institute of Information and Communications Technology, Koganei, Japan

Search for other papers by Toshio Iguchi in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A new attenuation correction method has been developed for the dual-frequency precipitation radar (DPR) on the core satellite of the Global Precipitation Measurement (GPM) mission. The new method is based on Hitschfeld and Bordan’s attenuation correction method (HB method), but the relationship between the specific attenuation k and the effective radar reflectivity factor Ze (kZe relationship) is modified by using the dual-frequency ratio (DFR) of Ze and the surface reference technique (SRT). Therefore, the new method is called the HB-DFR-SRT method (H-D-S method). The previous attenuation correction method, called the HB-DFR method (H-D method), results in an underestimation of precipitation rates for heavy precipitation, but the H-D-S method mitigates the negative bias by means of the SRT. When only a single-frequency measurement is available, the H-D-S method is identical to the HB-SRT method (H-S method).

The attenuation correction methods were tested with a simple synthetic DPR dataset. As long as the SRT gives perfect estimates of path-integrated attenuation and the adjustment factor of the kZe relationship (denoted by ε) is vertically constant, the H-S method is much better than the dual-frequency methods. Tests with SRT error and vertical variation in ε showed that the H-D method was better than the H-S method for weak precipitation, whereas the H-S method was better than the H-D method for heavy precipitation. The H-D-S method did not produce the best results for both weak and heavy precipitation, but the results are stable. Quantitative evaluation should be done with real DPR measurement datasets.

Corresponding author address: Shinta Seto, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan. E-mail: seto@nagasaki-u.ac.jp

This article is included in the Precipitation Retrieval Algorithms for GPM special collection.

Abstract

A new attenuation correction method has been developed for the dual-frequency precipitation radar (DPR) on the core satellite of the Global Precipitation Measurement (GPM) mission. The new method is based on Hitschfeld and Bordan’s attenuation correction method (HB method), but the relationship between the specific attenuation k and the effective radar reflectivity factor Ze (kZe relationship) is modified by using the dual-frequency ratio (DFR) of Ze and the surface reference technique (SRT). Therefore, the new method is called the HB-DFR-SRT method (H-D-S method). The previous attenuation correction method, called the HB-DFR method (H-D method), results in an underestimation of precipitation rates for heavy precipitation, but the H-D-S method mitigates the negative bias by means of the SRT. When only a single-frequency measurement is available, the H-D-S method is identical to the HB-SRT method (H-S method).

The attenuation correction methods were tested with a simple synthetic DPR dataset. As long as the SRT gives perfect estimates of path-integrated attenuation and the adjustment factor of the kZe relationship (denoted by ε) is vertically constant, the H-S method is much better than the dual-frequency methods. Tests with SRT error and vertical variation in ε showed that the H-D method was better than the H-S method for weak precipitation, whereas the H-S method was better than the H-D method for heavy precipitation. The H-D-S method did not produce the best results for both weak and heavy precipitation, but the results are stable. Quantitative evaluation should be done with real DPR measurement datasets.

Corresponding author address: Shinta Seto, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan. E-mail: seto@nagasaki-u.ac.jp

This article is included in the Precipitation Retrieval Algorithms for GPM special collection.

Save
  • Adhikari, N. B., Iguchi T. , Seto S. , and Takahashi N. , 2007: Rain retrieval performance of a dual-frequency precipitation radar technique with differential-attenuation constraint. IEEE Trans. Geosci. Remote Sens., 45, 26122618, doi:10.1109/TGRS.2007.893555.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and Kinzer G. G. , 1949: The terminal velocity of fall for water droplets in stagnant air. J. Atmos. Sci., 6, 243248, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W., and Bordan J. , 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteor., 11, 5867, doi:10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Meneghini R. , 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11, 15071516, doi:10.1175/1520-0426(1994)011<1507:IOSFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Kwiatkowski J. , Meneghini R. , Awaka J. , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2014: Evaluation of precipitation estimates by at-launch codes of GPM/DPR algorithms using synthetic data from TRMM/PR observations. J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 39313944, doi:10.1109/JSTARS.2014.2320960.

    • Search Google Scholar
    • Export Citation
  • Mardiana, R., Iguchi T. , and Takahashi N. , 2004: A dual-frequency rain profiling method without use of a surface reference technique. IEEE Trans. Geosci. Remote Sens., 42, 22142225, doi:10.1109/TGRS.2004.834647.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Kozu T. , Kumagai H. , and Boncyk W. C. , 1992: A study of rain estimation methods from space using dual-wavelength radar measurements at near-nadir incidence over ocean. J. Atmos. Oceanic Technol., 9, 364382, doi:10.1175/1520-0426(1992)009<0364:ASOREM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Kumagai H. , Wang J. R. , Iguchi T. , and Kozu T. , 1997: Microphysical retrievals over stratiform rain using measurements from an airborne dual-wavelength radar-radiometer. IEEE Trans. Geosci. Remote Sens., 35, 487506, doi:10.1109/36.581956.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Iguchi T. , Kozu T. , Liao L. , Okamoto K. , Jones J. A. , and Kwiatkowski J. , 2000: Use of the surface reference technique for path attenuation estimates from the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20532070, doi:10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Jones J. A. , Iguchi T. , Okamoto K. , and Kwiatkowski J. , 2004: A hybrid surface reference technique and its application to the TRMM Precipitation Radar. J. Atmos. Oceanic Technol., 21, 16451658, doi:10.1175/JTECH1664.1.

    • Search Google Scholar
    • Export Citation
  • Rose, C. R., and Chandrasekar V. , 2005: A systems approach to GPM dual-frequency retrieval. IEEE Trans. Geosci. Remote Sens., 43, 18161826, doi:10.1109/TGRS.2005.851165.

    • Search Google Scholar
    • Export Citation
  • Rose, C. R., and Chandrasekar V. , 2006a: A GPM dual-frequency retrieval algorithm: DSD profile-optimization method. J. Atmos. Oceanic Technol., 23, 13721383, doi:10.1175/JTECH1921.1.

    • Search Google Scholar
    • Export Citation
  • Rose, C. R., and Chandrasekar V. , 2006b: Extension of GPM dual-frequency iterative retrieval method with DSD-profile constraint. IEEE Trans. Geosci. Remote Sens., 44, 328335, doi:10.1109/TGRS.2005.861410.

    • Search Google Scholar
    • Export Citation
  • Seto, S., and Iguchi T. , 2007: Rainfall-induced changes in actual surface backscattering cross sections and effects on rain-rate estimates by spaceborne precipitation radar. J. Atmos. Oceanic Technol., 24, 16931709, doi:10.1175/JTECH2088.1.

    • Search Google Scholar
    • Export Citation
  • Seto, S., and Iguchi T. , 2011: Applicability of the iterative backward retrieval method for the GPM dual-frequency precipitation radar. IEEE Trans. Geosci. Remote Sens., 49, 18271838, doi:10.1109/TGRS.2010.2102766.

    • Search Google Scholar
    • Export Citation
  • Seto, S., Iguchi T. , and Oki T. , 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, doi:10.1109/TGRS.2012.2231686.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1348 741 209
PDF Downloads 498 120 5