3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar

Robert M. Banta * NOAA/ESRL, Boulder, Colorado

Search for other papers by Robert M. Banta in
Current site
Google Scholar
PubMed
Close
,
Yelena L. Pichugina Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado
* NOAA/ESRL, Boulder, Colorado

Search for other papers by Yelena L. Pichugina in
Current site
Google Scholar
PubMed
Close
,
W. Alan Brewer * NOAA/ESRL, Boulder, Colorado

Search for other papers by W. Alan Brewer in
Current site
Google Scholar
PubMed
Close
,
Julie K. Lundquist University of Colorado Boulder, Boulder, Colorado
National Renewable Energy Laboratory, Golden, Colorado

Search for other papers by Julie K. Lundquist in
Current site
Google Scholar
PubMed
Close
,
Neil D. Kelley Boulder, Colorado

Search for other papers by Neil D. Kelley in
Current site
Google Scholar
PubMed
Close
,
Scott P. Sandberg * NOAA/ESRL, Boulder, Colorado

Search for other papers by Scott P. Sandberg in
Current site
Google Scholar
PubMed
Close
,
Raul J. Alvarez II * NOAA/ESRL, Boulder, Colorado

Search for other papers by Raul J. Alvarez II in
Current site
Google Scholar
PubMed
Close
,
R. Michael Hardesty Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by R. Michael Hardesty in
Current site
Google Scholar
PubMed
Close
, and
Ann M. Weickmann Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Ann M. Weickmann in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Wind turbine wakes in the atmosphere are three-dimensional (3D) and time dependent. An important question is how best to measure atmospheric wake properties, both for characterizing these properties observationally and for verification of numerical, conceptual, and physical (e.g., wind tunnel) models of wakes. Here a scanning, pulsed, coherent Doppler lidar is used to sample a turbine wake using 3D volume scan patterns that envelop the wake and simultaneously measure the inflow profile. The volume data are analyzed for quantities of interest, such as peak velocity deficit, downwind variability of the deficit, and downwind extent of the wake, in a manner that preserves the measured data. For the case study presented here, in which the wake was well defined in the lidar data, peak deficits of up to 80% were measured 0.6–2 rotor diameters (D) downwind of the turbine, and the wakes extended more than 11D downwind. Temporal wake variability over periods of minutes and the effects of atmospheric gusts and lulls in the inflow are demonstrated in the analysis. Lidar scanning trade-offs important to ensuring that the wake quantities of interest are adequately sampled by the scan pattern, including scan coverage, number of scans per volume, data resolution, and scan-cycle repeat interval, are discussed.

Corresponding author address: Robert M. Banta, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. E-mail: robert.banta@noaa.gov

Abstract

Wind turbine wakes in the atmosphere are three-dimensional (3D) and time dependent. An important question is how best to measure atmospheric wake properties, both for characterizing these properties observationally and for verification of numerical, conceptual, and physical (e.g., wind tunnel) models of wakes. Here a scanning, pulsed, coherent Doppler lidar is used to sample a turbine wake using 3D volume scan patterns that envelop the wake and simultaneously measure the inflow profile. The volume data are analyzed for quantities of interest, such as peak velocity deficit, downwind variability of the deficit, and downwind extent of the wake, in a manner that preserves the measured data. For the case study presented here, in which the wake was well defined in the lidar data, peak deficits of up to 80% were measured 0.6–2 rotor diameters (D) downwind of the turbine, and the wakes extended more than 11D downwind. Temporal wake variability over periods of minutes and the effects of atmospheric gusts and lulls in the inflow are demonstrated in the analysis. Lidar scanning trade-offs important to ensuring that the wake quantities of interest are adequately sampled by the scan pattern, including scan coverage, number of scans per volume, data resolution, and scan-cycle repeat interval, are discussed.

Corresponding author address: Robert M. Banta, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. E-mail: robert.banta@noaa.gov
Save
  • Aitken, M. L., Kosović B. , Mirocha J. D. , and Lundquist J. K. , 2014a: Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting Model. J. Renewable Sustainable Energy, 6, 033137, doi:10.1063/1.4885111.

    • Search Google Scholar
    • Export Citation
  • Aitken, M. L., Lundquist J. K. , Banta R. M. , and Pichugina Y. L. , 2014b: Quantifying wind turbine wake characteristics from scanning remote sensor data. J. Atmos. Oceanic Technol., 31, 765787, doi:10.1175/JTECH-D-13-00104.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 2008: Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys., 56, 5887, doi:10.2478/s11600-007-0049-8.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Olivier L. D. , and Gudikson P. H. , 1993: Sampling requirements for drainage flows that transport atmospheric contaminants in complex terrain. Radiat. Prot. Dosim., 50, 243248.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Olivier L. D. , Neff W. D. , Levinson D. H. , and Ruffieux D. , 1995: Influence of canyon-induced flows on flow and dispersion over adjacent plains. Theor. Appl. Climatol., 52, 2742, doi:10.1007/BF00865505.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Olivier L. D. , Gudikson P. H. , and Lange R. , 1996: Implications of small-scale flow features to modeling dispersion over complex terrain. J. Appl. Meteor., 35, 330342, doi:10.1175/1520-0450(1996)035<0330:IOSSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Newsom R. K. , Lundquist J. K. , Pichugina Y. L. , Coulter R. L. , and Mahrt L. , 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, doi:10.1023/A:1019992330866.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Pichugina Y. L. , and Newsom R. K. , 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555, doi:10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Pichugina Y. L. , and Brewer W. A. , 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, doi:10.1175/JAS3776.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Brewer W. A. , Hardesty R. M. , Pichugina Y. L. , Lundquist J. K. , Kelley N. D. , and Mirocha J. , 2011: Enhancing energy production by wind farms. SPIE Newsroom, doi:10.1117/2.1201107.003800.

  • Banta, R. M., Brewer W. A. , Kelley N. D. , Brewer W. A. , and Hardesty R. M. , 2013: Wind-energy meteorology: Insight into wind properties in the turbine rotor layer of the atmosphere from high-resolution Doppler lidar. Bull. Amer. Meteor. Soc., 94, 883902, doi:10.1175/BAMS-D-11-00057.1.

    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., Folkerts L. , Ormel F. , Sanderhoff P. , Eecen P. , Stobbe O. , and Nielsen N. M. , 2003: Offshore wind turbine wakes measured by sodar. J. Atmos. Oceanic Technol., 20, 466477, doi:10.1175/1520-0426(2003)20<466:OWTWMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and Coauthors, 2010: Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J. Atmos. Oceanic Technol., 27, 13021317, doi:10.1175/2010JTECHA1398.1.

    • Search Google Scholar
    • Export Citation
  • Bingöl, F., Mann J. , and Larsen G. C. , 2010: Light detection and ranging measurements of wake dynamics part I: One-dimensional scanning. Wind Energy, 13, 5161, doi:10.1002/we.352.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Wexler R. , 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, doi:10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Churchfield, M. J., Lee S. , Michalakes J. , and Moriarty P. J. , 2012: A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J. Turbul., 13, N14, doi:10.1080/14685248.2012.668191.

    • Search Google Scholar
    • Export Citation
  • Clifton, A., Schreck S. , Scott G. , Kelley N. , and Lundquist J. K. , 2013: Turbine inflow characterization at the National Wind Technology Center. J. Sol. Energy Eng.,135, 031017, doi:10.1115/1.4024068.

  • Clive, P. I., Dinwoodie L. , and Quail F. , 2011: Direct measurement of wind turbine wakes using remote sensing. Proc. EWEA 2011, Brussels, Belgium, European Wind Energy Association, 1502. [Available online at http://proceedings.ewea.org/annual2011/allfiles2/1502_EWEA2011presentation.pdf.]

  • Crespo, A., Hernandez J. , and Frandsen S. , 1999: Survey of modelling methods for wind turbine wakes and wind farms. Wind Energy, 2, 124, doi:10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7.

    • Search Google Scholar
    • Export Citation
  • Elliott, D. L., and Barnard J. C. , 1990: Observations of wind turbine wakes and surface roughness effects on wind flow variability. Sol. Energy, 45, 265283, doi:10.1016/0038-092X(90)90012-2.

    • Search Google Scholar
    • Export Citation
  • España, G., Aubrun S. , Loyer S. , and Devinant P. , 2011: Spatial study of the wake meandering using modelled wind turbines in a wind tunnel. Wind Energy, 14, 923937, doi:10.1002/we.515.

    • Search Google Scholar
    • Export Citation
  • Grund, C. J., Banta R. M. , George J. L. , Howell J. N. , Post M. J. , Richter R. A. , and Weickmann A. M. , 2001: High-resolution Doppler lidar for boundary-layer and cloud research. J. Atmos. Oceanic Technol., 18, 376393, doi:10.1175/1520-0426(2001)018<0376:HRDLFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., and Schroeder J. L. , 2013: Documenting wind speed and power deficits behind a utility-scale wind turbine. J. Appl. Meteor. Climatol., 52, 3946, doi:10.1175/JAMC-D-12-0145.1.

    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., Schroeder J. L. , Gunter W. S. , and Guynes J. G. , 2012: Measuring a utility-scale turbine wake using the TTUKa mobile research radars. J. Atmos. Ocean. Technol.,29, 765−771, doi:10.1175/JTECH-D-12-00039.1.

  • Högström, U., Asimakopoulos D. N. , Kambezidis H. , Helmis C. G. , and Smedman A.-S. , 1988: A field study of the wake behind a 2 MW wind turbine. Atmos. Environ., 22, 803820, doi:10.1016/0004-6981(88)90020-0.

    • Search Google Scholar
    • Export Citation
  • Iungo, G. V., Wu Y.-T. , and Porté-Agel F. , 2013: Field measurements of wind turbine wakes with lidars. J. Atmos. Oceanic Technol., 30, 274287, doi:10.1175/JTECH-D-12-00051.1.

    • Search Google Scholar
    • Export Citation
  • Jacobs, E. W., Kelley N. D. , McKenna H. E. , and Birkenheuer N. J. , 1984: Wake characteristics of the MOD-2 wind turbine at Medicine Bow, Wyoming. Solar Energy Research Institute Tech. Paper SERI/TP-214-2587, 10 pp. [Available online at http://www.nrel.gov/docs/legosti/old/2567.pdf.]

  • Käsler, Y., Rahm S. , Simmet R. , and Kuhn M. , 2010: Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar. J. Atmos. Oceanic Technol., 27, 15291532, doi:10.1175/2010JTECHA1483.1.

    • Search Google Scholar
    • Export Citation
  • Kelley, N. D., 2011: Turbine–turbulence interaction: The basis for the development of the TurbSim stochastic simulator. NREL Tech. Rep. NREL/TP-5000-52353, 299 pp. [Available online at http://www.nrel.gov/docs/fy12osti/52353.pdf.]

  • Kindler, D., Oldroyd A. , MacAskill A. , and Finch D. , 2007: An eight month test campaign of the Qinetiq ZephIR system: Preliminary results. Meteor. Z., 16, 479489, doi:10.1127/0941-2948/2007/0226.

    • Search Google Scholar
    • Export Citation
  • Lu, H., and Porté-Agel F. , 2011: Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids,23, 065101, doi:10.1063/1.3589857.

  • Magnusson, M., and Smedman A.-S. , 1994: Influence of atmospheric stability on wind turbine wakes. Wind Eng., 18, 139152.

  • Mann, J., Peña A. , Bingöl F. , Wagner R. , and Courtney M. S. , 2010: Lidar scanning of momentum flux in and above the atmospheric surface layer. J. Atmos. Oceanic Technol., 27, 959976, doi:10.1175/2010JTECHA1389.1.

    • Search Google Scholar
    • Export Citation
  • Mirocha, J., Kosovic B. , Aitken M. L. , and Lundquist J. K. , 2014: Implementation of a generalized actuator disk wind turbine model into WRF for large-eddy simulation applications. J. Renewable Sustainable Energy, 6, 013104, doi:10.1063/1.4861061.

    • Search Google Scholar
    • Export Citation
  • Peña, A., Hasager C. B. , Gryning S.-E. , Courtney M. , Antoniou I. , and Mikkelsen T. , 2008: Measurements and modelling of the wind speed profile in the marine atmospheric boundary layer. Bound.-Layer Meteor., 129, 479495, doi:10.1007/s10546-008-9323-9.

    • Search Google Scholar
    • Export Citation
  • Peña, A., Hasagar C. B. , Gryning S.-E. , Courtney M. , Antoniou I. , and Mikkelsen T. , 2009: Offshore wind profiling using light detection and ranging measurements. Wind Energy,12, 105–124, doi:10.1002/we.283.

  • Pichugina, Y. L., and Banta R. M. , 2010: Stable boundary-layer depth from high-resolution measurements of the mean wind profile. J. Appl. Meteor. Climatol., 49, 2035, doi:10.1175/2009JAMC2168.1.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., Banta R. M. , Kelley N. D. , Jonkman B. , Tucker S. C. , Newsom R. K. , and Brewer W. A. , 2008: Horizontal-velocity and variance measurements in the stable boundary layer using Doppler lidar: Sensitivity to averaging procedures. J. Atmos. Oceanic Technol., 25, 13071327, doi:10.1175/2008JTECHA988.1.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., Banta R. M. , Brewer W. A. , Sandberg S. P. , and Hardesty R. M. , 2012: Doppler lidar–based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications. J. Appl. Meteor. Climatol., 51, 327349, doi:10.1175/JAMC-D-11-040.1.

    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., Wu Y.-T. , Lu H. , and Conzemius R. , 2011: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind Eng. Ind. Aerodyn., 99, 154168, doi:10.1016/j.jweia.2011.01.011.

    • Search Google Scholar
    • Export Citation
  • Rhodes, M. E., and Lundquist J. K. , 2013: The effect of wind turbine wakes on summertime Midwest atmospheric wind profiles. Bound.-Layer Meteor., 149, 85103, doi:10.1007/s10546-013-9834-x.

    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., Lundquist J. K. , and Schreck S. J. , 2009: Research needs for wind resource characterization. Bull. Amer. Meteor. Soc., 90, 535538, doi:10.1175/2008BAMS2729.1.

    • Search Google Scholar
    • Export Citation
  • Smalikho, I. N., Banakh V. A. , Pichugina Y. L. , Brewer W. A. , Banta R. M. , Lundquist J. K. , and Kelley N. D. , 2013: Lidar investigation of atmosphere effect on a wind turbine wake. J. Atmos. Oceanic Technol., 30, 2554–2570, doi:10.1175/JTECH-D-12-00108.1.

    • Search Google Scholar
    • Export Citation
  • Trujillo, J.-J., Bingöl F. , Larsen G. C. , Mann J. , and Kühn M. , 2011: Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning. Wind Energy, 14, 6175, doi:10.1002/we.402.

    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., Brewer W. A. , Banta R. M. , Senff C. J. , Sandberg S. P. , Law D. C. , Weickmann A. M. , and Hardesty R. M. , 2009: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Oceanic Technol., 26, 673688, doi:10.1175/2008JTECHA1157.1.

    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., and Coauthors, 2010: Relationships of coastal nocturnal boundary layer winds and turbulence to Houston ozone concentrations during TexAQS 2006. J. Geophys. Res., 115, D10304, doi:10.1029/2009JD013169.

    • Search Google Scholar
    • Export Citation
  • Vermeer, L. J., Sørensen J. N. , and Crespo A. , 2003: Wind turbine wake aerodynamics. Prog. Aerosp. Sci., 39, 467510, doi:10.1016/S0376-0421(03)00078-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1481 605 160
PDF Downloads 493 130 12