Developing and Evaluating Ice Cloud Parameterizations for Forward Modeling of Radar Moments Using in situ Aircraft Observations

Maximilian Maahn Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Search for other papers by Maximilian Maahn in
Current site
Google Scholar
PubMed
Close
,
Ulrich Löhnert Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Search for other papers by Ulrich Löhnert in
Current site
Google Scholar
PubMed
Close
,
Pavlos Kollias Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Pavlos Kollias in
Current site
Google Scholar
PubMed
Close
,
Robert C. Jackson Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert C. Jackson in
Current site
Google Scholar
PubMed
Close
, and
Greg M. McFarquhar Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Greg M. McFarquhar in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Observing ice clouds using zenith pointing millimeter cloud radars is challenging because the transfer functions relating the observables to meteorological quantities are not uniquely defined. Here, the authors use a spectral radar simulator to develop a consistent dataset containing particle mass, area, and size distribution as functions of size. This is an essential prerequisite for radar sensitivity studies and retrieval development. The data are obtained from aircraft in situ and ground-based radar observations during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) campaign in Alaska. The two main results of this study are as follows: 1) An improved method to estimate the particle mass–size relation as a function of temperature is developed and successfully evaluated by combining aircraft in situ and radar observations. The method relies on a functional relation between reflectivity and Doppler velocity. 2) The impact on the Doppler spectrum by replacing measurements of particle area and size distribution by recent analytical expressions is investigated. For this, higher-order moments such as skewness and kurtosis as well as the slopes of the Doppler spectrum are also used as a proxy for the Doppler spectrum. For the area–size relation, it is found that a power law is not sufficient to describe particle area and small deviations from a power law are essential for obtaining consistent higher moments. For particle size distributions, the normalization approach for the gamma distribution of Testud et al., adapted to maximum diameter as size descriptor, is preferred.

Corresponding author address: Maximilian Maahn, Institute for Geophysics and Meteorology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany. E-mail: mmaahn@meteo.uni-koeln.de

Abstract

Observing ice clouds using zenith pointing millimeter cloud radars is challenging because the transfer functions relating the observables to meteorological quantities are not uniquely defined. Here, the authors use a spectral radar simulator to develop a consistent dataset containing particle mass, area, and size distribution as functions of size. This is an essential prerequisite for radar sensitivity studies and retrieval development. The data are obtained from aircraft in situ and ground-based radar observations during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) campaign in Alaska. The two main results of this study are as follows: 1) An improved method to estimate the particle mass–size relation as a function of temperature is developed and successfully evaluated by combining aircraft in situ and radar observations. The method relies on a functional relation between reflectivity and Doppler velocity. 2) The impact on the Doppler spectrum by replacing measurements of particle area and size distribution by recent analytical expressions is investigated. For this, higher-order moments such as skewness and kurtosis as well as the slopes of the Doppler spectrum are also used as a proxy for the Doppler spectrum. For the area–size relation, it is found that a power law is not sufficient to describe particle area and small deviations from a power law are essential for obtaining consistent higher moments. For particle size distributions, the normalization approach for the gamma distribution of Testud et al., adapted to maximum diameter as size descriptor, is preferred.

Corresponding author address: Maximilian Maahn, Institute for Geophysics and Meteorology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany. E-mail: mmaahn@meteo.uni-koeln.de
Save
  • Atlas, D., Srivastava R. C. , and Sekhon R. S. , 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, doi:10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Babb, D. M., Verlinde J. , and Albrecht B. A. , 1999: Retrieval of cloud microphysical parameters from 94-GHz radar Doppler power spectra. J. Atmos. Oceanic Technol., 16, 489503, doi:10.1175/1520-0426(1999)016<0489:ROCMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and Hallett J. , 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Benedetti, A., Stephens G. L. , and Haynes J. M. , 2003: Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approach. J. Geophys. Res., 108, 4335, doi:10.1029/2002JD002693.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and Francis P. N. , 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., Illingworth A. J. , Heymsfield A. J. , McFarquhar G. M. , Browning K. A. , and Gosset M. , 1995: The role of spaceborne millimeter-wave radar in the global monitoring of ice cloud. J. Appl. Meteor., 34, 23462366, doi:10.1175/1520-0450(1995)034<2346:TROSMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byrd, R., Lu P. , Nocedal J. , and Zhu C. , 1995: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput., 16, 11901208, doi:10.1137/0916069.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., Schramm J. L. , Rossow W. B. , and Randall D. , 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764, doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and Hogan R. J. , 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.

  • Delanoë, J., Protat A. , Testud J. , Bouniol D. , Heymsfield A. J. , Bansemer A. , Brown P. R. A. , and Forbes R. M. , 2005: Statistical properties of the normalized ice particle size distribution. J. Geophys. Res., 110, D10201, doi:10.1029/2004JD005405.

  • Delanoë, J., Heymsfield A. J. , Protat A. , Bansemer A. , and Hogan R. J. , 2014: Normalized particle size distribution for remote sensing application. J. Geophys. Res. Atmos., 119, 42044227, doi:10.1002/2013JD020700.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., Hogan R. J. , Brown P. R. A. , Illingworth A. J. , Choularton T. W. , and Cotton R. J. , 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017, doi:10.1256/qj.04.134.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., Heymsfield A. J. , and Bansemer A. , 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, doi:10.1175/JTECH1922.1.

    • Search Google Scholar
    • Export Citation
  • Freer, M., and McFarquhar G. M. , 2008: Development and comparison of cloud particle size distribution fitting and analysis techniques. Proc. 18th ARM Science Team Meeting, Norfolk, VA, ARM. [Available online at http://www.arm.gov/publications/proceedings/conf18/poster/P00090.pdf.]

  • Fukuta, N., and Takahashi T. , 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, doi:10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garnett, J. C. M., 1904: Colours in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, 203, 385420, doi:10.1098/rsta.1904.0024.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., and Strauch R. G. , 1989: Further guide for the retrieval of dropsize distributions in water clouds with a ground-based clear-air-sensing Doppler radar. NASA STI/Recon Tech. Rep. N, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 48 pp.

  • Gunn, K. L. S., and Marshall J. S. , 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15, 452461, doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., 2003: Measurement in the atmosphere. Handbook of Weather, Climate, and Water, T. D. Potter and B. R. Colman, Eds., John Wiley & Sons, 711–720.

  • Heymsfield, A. J., and Westbrook C. D. , 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, doi:10.1175/2010JAS3379.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Bansemer A. , Schmitt C. , Twohy C. , and Poellot M. R. , 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, doi:10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Schmitt C. , Bansemer A. , and Twohy C. H. , 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, doi:10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Schmitt C. , and Bansemer A. , 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to 86°C. J. Atmos. Sci., 70, 41234154, doi:10.1175/JAS-D-12-0124.1.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., Chang S. , and Locatelli J. D. , 1974: The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79, 21992206, doi:10.1029/JC079i015p02199.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Tian L. , Brown P. R. A. , Westbrook C. D. , Heymsfield A. J. , and Eastment J. D. , 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, doi:10.1175/JAMC-D-11-074.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and McFarquhar G. M. , 2014: An assessment of the impact of antishattering tips and artifact removal techniques on bulk cloud ice microphysical and optical properties measured by the 2D Cloud Probe. J. Atmos. Oceanic Technol., 31, 2131–2144, doi:10.1175/JTECH-D-14-00018.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and Coauthors, 2012: The dependence of ice microphysics on aerosol concentration in Arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res.,117, D15207, doi:10.1029/2012JD017668.

  • Jackson, R. C., McFarquhar G. M. , Stith J. , Beals M. , Shaw R. A. , Jensen J. , Fugal J. , and Korolev A. , 2014: An assessment of the impact of anti-shattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 2567–2590, doi:10.1175/JTECH-D-13-00239.1.

    • Search Google Scholar
    • Export Citation
  • Kalesse, H., Kollias P. , and Szyrmer W. , 2013: On using the relationship between Doppler velocity and radar reflectivity to identify microphysical processes in midlatitudinal ice clouds. J. Geophys. Res. Atmos., 118, 12 16812 179, doi:10.1002/2013JD020386.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., Kulie M. S. , and Bennartz R. , 2011: A triple-frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res., 116, D11203, doi:10.1029/2010JD015430.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Clothiaux E. E. , Miller M. A. , Luke E. P. , Johnson K. L. , Moran K. P. , Widener K. B. , and Albrecht B. A. , 2007: The atmospheric radiation measurement program cloud profiling radars: Second-generation sampling strategies, processing, and cloud data products. J. Atmos. Oceanic Technol., 24, 1199–1214, doi:10.1175/JTECH2033.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Rémillard J. , Luke E. , and Szyrmer W. , 2011a: Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications. J. Geophys. Res., 116, D13201, doi:10.1029/2010JD015237.

  • Kollias, P., Szyrmer W. , Rémillard J. , and Luke E. , 2011b: Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution. J. Geophys. Res., 116, D13203, doi:10.1029/2010JD015238.

  • Korolev, A., and Isaac G. , 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, doi:10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Isaac G. , 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22, 528542, doi:10.1175/JTECH1720.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., Strapp J. W. , Isaac G. A. , and Nevzorov A. N. , 1998: The Nevzorov airborne hot-wire LWC–TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 14951510, doi:10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., Emery E. F. , Strapp J. W. , Cober S. G. , Isaac G. A. , Wasey M. , and Marcotte D. , 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., Emery E. F. , and Creelman K. , 2013a: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690708, doi:10.1175/JTECH-D-12-00142.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., Emery E. F. , Strapp J. W. , Cober S. G. , and Isaac G. A. , 2013b: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 25272553, doi:10.1175/JTECH-D-13-00115.1.

    • Search Google Scholar
    • Export Citation
  • Lamer, K., Tatarevic A. , Jo I. , and Kollias P. , 2014: Evaluation of gridded scanning ARM cloud radar reflectivity observations and vertical Doppler velocity retrievals. Atmos. Meas. Tech., 7, 10891103, doi:10.5194/amt-7-1089-2014.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, doi:10.5194/amt-4-1361-2011.

    • Search Google Scholar
    • Export Citation
  • Libbrecht, K. G., 2005: The physics of snow crystals. Rep. Prog. Phys., 68, 855, doi:10.1088/0034-4885/68/4/R03.

  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570, doi:10.1175/2008BAMS2486.1.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and Hobbs P. V. , 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., Kneifel S. , Battaglia A. , Hagen M. , Hirsch L. , and Crewell S. , 2011: A multisensor approach toward a better understanding of snowfall microphysics: The TOSCA project. Bull. Amer. Meteor. Soc., 92, 613628, doi:10.1175/2010BAMS2909.1.

    • Search Google Scholar
    • Export Citation
  • Luke, E. P., Kollias P. , and Shupe M. D. , 2010: Detection of supercooled liquid in mixed-phase clouds using radar Doppler spectra. J. Geophys. Res.,115, D19201, doi:10.1029/2009JD012884.

  • Maahn, M., and Kollias P. , 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 26612673, doi:10.5194/amt-5-2661-2012.

    • Search Google Scholar
    • Export Citation
  • Magono, C., and Lee C. W. , 1966: Meteorological classification of natural snow crystals. J Fac. Sci., Hokkaido Univ., Ser. 7,2, 321–335.

    • Search Google Scholar
    • Export Citation
  • Massey, F. J., Jr., 1951: The Kolmogorov-Smirnov test for goodness of fit. J. Amer. Stat. Assoc., 46 (253), 6878, doi:10.1080/01621459.1951.10500769.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Korolev A. V. , and Heymsfield A. J. , 2002: Profiling cloud ice mass and particle characteristic size from Doppler radar measurements. J. Atmos. Oceanic Technol., 19, 10031018, doi:10.1175/1520-0426(2002)019<1003:PCIMAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2011: Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183–201, doi:10.1175/2010BAMS2935.1.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., Hsieh T.-L. , Freer M. , Mascio J. , and Jewett B. F. , 2015: The characterization of ice hydrometeor gamma size distributions as volumes in N0-λ-μ phase space: Implications for microphysical process modeling. J. Atmos. Sci., 72, 892–909, doi:10.1175/JAS-D-14-0011.1.

    • Search Google Scholar
    • Export Citation
  • Melchionna, S., Bauer M. , and Peters G. , 2008: A new algorithm for the extraction of cloud parameters using multipeak analysis of cloud radar data—First application and preliminary results. Meteor. Z., 17, 613620, doi:10.1127/0941-2948/2008/0322.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, doi:10.1364/AO.39.001026.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., Zhang R. , and Pitter R. L. , 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29, 153163, doi:10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moninger, W. R., Benjamin S. G. , Jamison B. D. , Schlatter T. W. , Smith T. L. , and Szoke E. J. , 2010: Evaluation of regional aircraft observations using TAMDAR. Wea. Forecasting, 25, 627645, doi:10.1175/2009WAF2222321.1.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., Martner B. E. , Post M. J. , Kropfli R. A. , Welsh D. C. , and Widener K. B. , 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443455, doi:10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., de Boer G. , Feingold G. , Harrington J. , Shupe M. D. , and Sulia K. , 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., 1997: Doppler radar spectral width broadening due to beamwidth and wind shear. Ann. Geophys., 15, 786796, doi:10.1007/s00585-997-0786-7.

    • Search Google Scholar
    • Export Citation
  • Noone, K. J., Ogren J. A. , Heintzenberg J. , Charlson R. J. , and Covert D. S. , 1988: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol., 8, 235244, doi:10.1080/02786828808959186.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 2001: Physical and microwave radiative properties of precipitating clouds. Part II: A parametric 1D rain-cloud model for use in microwave radiative transfer simulations. J. Appl. Meteor., 40, 21152129, doi:10.1175/1520-0450(2001)040<2115:PAMRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and Huang W. , 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, doi:10.1175/2009JAS3146.1.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and Huang W. , 2011: The modified gamma size distribution applied to inhomogeneous and nonspherical particles: Key relationships and conversions. J. Atmos. Sci., 68, 14601473, doi:10.1175/2011JAS3645.1.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and Mace G. G. , 2014: MCMC-based assessment of the error characteristics of a surface-based combined radar-passive microwave cloud property retrieval. J. Appl. Meteor. Climatol., 53, 20342057, doi:10.1175/JAMC-D-13-0237.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., Bouniol D. , O’Connor E. J. , Klein Baltink H. , Verlinde J. , and Widener K. , 2011: CloudSat as a global radar calibrator. J. Atmos. Oceanic Technol., 28, 445452, doi:10.1175/2010JTECHA1443.1.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific Publishing, 240 pp.

  • Schmitt, C. G., and Heymsfield A. J. , 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616, doi:10.1175/2009JAS3187.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T. L., and Stephens G. L. , 1995: Theoretical aspects of modeling backscattering by cirrus ice particles at millimeter wavelengths. J. Atmos. Sci., 52, 43674385, doi:10.1175/1520-0469(1995)052<4367:TAOMBB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., Kollias P. , Matrosov S. Y. , and Schneider T. L. , 2004: Deriving mixed-phase cloud properties from Doppler radar spectra. J. Atmos. Oceanic Technol., 21, 660670, doi:10.1175/1520-0426(2004)021<0660:DMCPFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., Kollias P. , Poellot M. , and Eloranta E. , 2008: On deriving vertical air motions from cloud radar Doppler spectra. J. Atmos. Oceanic Technol., 25, 547557, doi:10.1175/2007JTECHA1007.1.

    • Search Google Scholar
    • Export Citation
  • Sloss, P. W., and Atlas D. , 1968: Wind shear and reflectivity gradient effects on Doppler radar spectra. J. Atmos. Sci., 25, 10801089, doi:10.1175/1520-0469(1968)025<1080:WSARGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., 1995: On the universality of the Kolmogorov constant. Phys. Fluids, 7, 27782784, doi:10.1063/1.868656.

  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., Tatarevic A. , and Kollias P. , 2012: Ice clouds microphysical retrieval using 94-GHz Doppler radar observations: Basic relations within the retrieval framework. J. Geophys. Res.,117, D14203, doi:10.1029/2011JD016675.

  • Testud, J., Oury S. , Black R. A. , Amayenc P. , and Dou X. , 2001: The concept of normalized distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, L., Heymsfield G. M. , Li L. , Heymsfield A. J. , Bansemer A. , Twohy C. H. , and Srivastava R. C. , 2010: A study of cirrus ice particle size distribution using TC4 observations. J. Atmos. Sci., 67, 195216, doi:10.1175/2009JAS3114.1.

    • Search Google Scholar
    • Export Citation
  • Troyan, D., and Jensen M. , 1996: Merged sounding (MERGESONDE1mace). 2008-04-01 to 2008-04-30, 71.323 N 156.609 W: North Slope Alaska (NSA) Central Facility, Barrow AK (C1). Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, doi:10.5439/1034922.

  • Turner, D. D., and Löhnert U. , 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, doi:10.1175/JAMC-D-13-0126.1.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., Leinonen J. , Moisseev D. , and Nousiainen T. , 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate, and soft spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, doi:10.1175/JTECH-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., Rambukkange M. P. , Clothiaux E. E. , McFarquhar G. M. , and Eloranta E. W. , 2013: Arctic multilayered, mixed-phase cloud processes revealed in millimeter-wave cloud radar Doppler spectra. J. Geophys. Res. Atmos.,118, 13 199–13 213, doi:10.1002/2013JD020183.

  • Waliser, D. E., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and Brandt R. E. , 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res.,113, D14220, doi:10.1029/2007JD009744.

  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1975: Simulation of weatherlike Doppler spectra and signals. J. Appl. Meteor., 14, 619620, doi:10.1175/1520-0450(1975)014<0619:SOWDSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 895 470 137
PDF Downloads 394 78 7