Evaluations of the Spheroidal Particle Model for Describing Cloud Radar Depolarization Ratios of Ice Hydrometeors

Sergey Y. Matrosov Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Sergey Y. Matrosov in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Information on ice cloud particle nonsphericity is important for many practical applications ranging from modeling the cloud radiation impact to remote sensing of hydrometeor microphysical properties. Scanning cloud radars, which often measure depolarization ratio as a sole polarization variable, can provide a means for retrieving this information. The applicability of a spheroidal particle model (i.e., a regular ellipsoid that has two principal axes of the same length) is evaluated for describing depolarization properties of ice particles. It is shown that this simple model, which uses an aspect ratio as a single parameter characterizing particle nonsphericity, explains reasonably well the scatter of slant 45° linear depolarization ratio (SLDR) measurements versus direct estimates of the zenith direction backscatter enhancement observed during the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) with the scanning W-band cloud radar (SWACR). Observed SLDR elevation angle patterns are also approximated reasonably well by this shape model. It is suggested that an SLDR difference between slant and zenith radar pointing can be used for prospective remote sensing methods of inferring particle aspect ratio from cloud radar depolarization measurements. Depending on mass–size relations, the value of this difference corresponding to median zenith reflectivity enhancement observed during StormVEx relates to aspect ratios of about 0.5 ± 0.2, which generally agrees with typical aspect ratios of ice particles. Expected aspect ratio retrieval uncertainties within the spheroidal shape model and the use of different types of radar depolarization ratio measurements are discussed. A correction for estimated zenith direction reflectivity enhancements due to particle nonsphericity is suggested.

Corresponding author address: Sergey Y. Matrosov, R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: sergey.matrosov@noaa.gov

Abstract

Information on ice cloud particle nonsphericity is important for many practical applications ranging from modeling the cloud radiation impact to remote sensing of hydrometeor microphysical properties. Scanning cloud radars, which often measure depolarization ratio as a sole polarization variable, can provide a means for retrieving this information. The applicability of a spheroidal particle model (i.e., a regular ellipsoid that has two principal axes of the same length) is evaluated for describing depolarization properties of ice particles. It is shown that this simple model, which uses an aspect ratio as a single parameter characterizing particle nonsphericity, explains reasonably well the scatter of slant 45° linear depolarization ratio (SLDR) measurements versus direct estimates of the zenith direction backscatter enhancement observed during the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) with the scanning W-band cloud radar (SWACR). Observed SLDR elevation angle patterns are also approximated reasonably well by this shape model. It is suggested that an SLDR difference between slant and zenith radar pointing can be used for prospective remote sensing methods of inferring particle aspect ratio from cloud radar depolarization measurements. Depending on mass–size relations, the value of this difference corresponding to median zenith reflectivity enhancement observed during StormVEx relates to aspect ratios of about 0.5 ± 0.2, which generally agrees with typical aspect ratios of ice particles. Expected aspect ratio retrieval uncertainties within the spheroidal shape model and the use of different types of radar depolarization ratio measurements are discussed. A correction for estimated zenith direction reflectivity enhancements due to particle nonsphericity is suggested.

Corresponding author address: Sergey Y. Matrosov, R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: sergey.matrosov@noaa.gov
Save
  • Austin, R. T., Heymsfield A. J. , and Stephens G. L. , 2009: Retrievals of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Avramov, A., and Harrington J. Y. , 2010: The influence of parameterized ice habit on simulated mixed‐phase arctic clouds. J. Geophys. Res., 115, D03205, doi:10.1029/2009JD012108.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and Huffman D. R. , 1983: Absorption and Scattering of Light by Small Particles.John Wiley and Sons, 530 pp.

  • Botta, G., Aydin K. , Verlinde J. , Avramov A. E. , Ackerman A. S. , Fridlind A. M. , McFarquhar G. M. , and Wolde M. , 2011: Millimeter wave scattering from ice crystals and their aggregates: Comparing cloud model simulations with X‐ and Ka‐band radar measurements. J. Geophys. Res., 116, D00T04, doi:10.1029/2011JD015909.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., Ikeda K. , Zhang G. , Schonhuber M. , and Rasmussen R. M. , 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, doi:10.1175/JAM2489.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar.Cambridge University Press, 636 pp.

  • Brown, P. R. A., and Francis P. N. , 1995: Improved measurements of the ice water content in cirrus using total-water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garnett, J. C. M., 1904: Colours in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, 203A, 385420, doi:10.1098/rsta.1904.0024.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Bansemer A. , Schmitt C. , Twohy C. , and Poellot P. R. , 2004: Effective ice densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, doi:10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Field P. , and Bansemer A. , 2008: Exponential size distributions for snow. J. Atmos. Sci., 65, 40174031, doi:10.1175/2008JAS2583.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and Westbrook C. D. , 2014: Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar Rayleigh–Gans approximation. J. Atmos. Sci., 71, 32923301, doi:10.1175/JAS-D-13-0347.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Tian L. , Brown P. R. A. , Westbrook C. D. , Heymsfield A. J. , and Eastment J. D. , 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, doi:10.1175/JAMC-D-11-074.1.

    • Search Google Scholar
    • Export Citation
  • Holt, A. R., 1984: Some factors affecting the remote sensing of rain by polarization diversity radar in the 3- to 35-GHZ frequency range. Radio Sci., 19, 13991412, doi:10.1029/RS019i005p01399.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and Isaac G. , 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, doi:10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., Kneifel S. , Moisseev D. , Tyynelä J. , Tanelli S. , and Nousiainen T. , 2012: Evidence of nonspheroidal behavior in millimeter-wavelength radar observations of snowfall. J. Geophys. Res., 117, D18205, doi:10.1029/2012JD017680.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113, D00A09, doi:10.1029/2007JD009766.

  • Mace, G., and Coauthors, 2010: STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment science and operations plan. U.S. Department of Energy Rep. DOE/SC-ARM-10-021, 53 pp.

  • Marchand, R., Mace G. G. , Hallar A. G. , McCubbin I. B. , Matrosov S. Y. , and Shupe M. D. , 2013: Enhanced radar backscattering due to oriented ice particles at 95 GHz during StormVEx. J. Atmos. Oceanic Technol., 30, 23362351, doi:10.1175/JTECH-D-13-00005.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1998: A dual-wavelength radar method to measure snowfall rate. J. Appl. Meteor., 37, 15101521, doi:10.1175/1520-0450(1998)037<1510:ADWRMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Reinking R. F. , Kropfli R. A. , Martner B. E. , and Bartram B. W. , 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, doi:10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Heymsfield A. J. , and Wang Z. , 2005a: Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L13816, doi:10.1029/2005GL023210.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Reinking R. F. , and Djalalova I. V. , 2005b: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, doi:10.1175/JAS-3356.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Mace G. G. , Marchand R. , Shupe M. D. , Hallar A. G. , and McCubbin I. B. , 2012: Observations of Ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode. J. Atmos. Oceanic Technol., 29, 9891008, doi:10.1175/JTECH-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V., and Straka J. M. , 2013: Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data. J. Atmos. Oceanic Technol., 30, 16911703, doi:10.1175/JTECH-D-12-00212.1.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., Travis L. D. , and Mackowski D. W. , 1996: T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535575, doi:10.1016/0022-4073(96)00002-7.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass‐ and area‐dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and Huang W. , 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, doi:10.1175/2009JAS3146.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and Klett J. D. , 1978: Microphysics of Clouds and Precipitation.D. Reidel, 714 pp.

  • Reinking, R. F., Matrosov S. Y. , Kropfli R. A. , and Bartram B. W. , 2002: Evaluation of a 45° slant quasi-linear radar polarization for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321, doi:10.1175/1520-0426-19.3.296.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., and Chandrasekar V. , 2014: Characterizing falling snow using multifrequency dual-polarization measurements. J. Geophys. Res. Atmos., 119, 8268–8283, doi:10.1002/2013JD021369.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., Leinonen J. , Moisseev D. , and Nousiainen T. , 2011: Radar backscattering from snowflakes: Comparisons of fractal, aggregate and soft spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, doi:10.1175/JTECH-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D., Doviak R. , Zhang G. , and Ryzhkov A. , 2010: Bias in differential reflectivity due to cross coupling through the radiation patterns of polarimetric weather radars. J. Atmos. Oceanic Technol., 27, 16241637, doi:10.1175/2010JTECHA1350.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 503 221 45
PDF Downloads 203 33 0