Quality Control of Antenna Alignment and Receiver Calibration Using the Sun: Adaptation to Midrange Weather Radar Observations at Low Elevation Angles

Patricia Altube Meteorological Service of Catalonia, and Department of Astronomy and Meteorology, University of Barcelona, Barcelona, Spain

Search for other papers by Patricia Altube in
Current site
Google Scholar
PubMed
Close
,
Joan Bech Department of Astronomy and Meteorology, University of Barcelona, Barcelona, Spain

Search for other papers by Joan Bech in
Current site
Google Scholar
PubMed
Close
,
Oriol Argemí Meteorological Service of Catalonia, Barcelona, Spain

Search for other papers by Oriol Argemí in
Current site
Google Scholar
PubMed
Close
, and
Tomeu Rigo Meteorological Service of Catalonia, Barcelona, Spain

Search for other papers by Tomeu Rigo in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A quality control method for combined online monitoring of weather radar antenna pointing biases and receiver calibration using solar signals detected by an operational radar is adapted for application to midrange radar data (80–150 km). As the original method was developed using long-range data, additional criteria based on robust statistical estimators are imposed in the sun signature detection and selection process, allowing to discard observations biased by ground clutter or precipitation and to remove very influential outliers. The validity ranges of the physical model describing the solar interferences detected by the scanning radar antenna are explicitly defined and an equation for estimation of the effective scanning width in reception is provided in a thorough theoretical derivation. The method proposed reveals its sensitivity to changes in the antenna pointing accuracy and receiver calibration when applied to operational data obtained with three C-band radars during one year. A comparative study on the goodness of fit between a three- and a five-parameter model highlights the effect on the stability and accuracy of the antenna and receiver parameters retrieved for each radar system, considering the dissimilar information content of the observations collected by each radar. The performance of the proposed methodology under the effects of the presence of ground clutter and radio local area network interferences is discussed in the results presented.

Corresponding author address: Patricia Altube, Meteorological Service of Catalonia, Berlin 38-48, 08029 Barcelona, Spain. E-mail: paltube@meteo.cat

Abstract

A quality control method for combined online monitoring of weather radar antenna pointing biases and receiver calibration using solar signals detected by an operational radar is adapted for application to midrange radar data (80–150 km). As the original method was developed using long-range data, additional criteria based on robust statistical estimators are imposed in the sun signature detection and selection process, allowing to discard observations biased by ground clutter or precipitation and to remove very influential outliers. The validity ranges of the physical model describing the solar interferences detected by the scanning radar antenna are explicitly defined and an equation for estimation of the effective scanning width in reception is provided in a thorough theoretical derivation. The method proposed reveals its sensitivity to changes in the antenna pointing accuracy and receiver calibration when applied to operational data obtained with three C-band radars during one year. A comparative study on the goodness of fit between a three- and a five-parameter model highlights the effect on the stability and accuracy of the antenna and receiver parameters retrieved for each radar system, considering the dissimilar information content of the observations collected by each radar. The performance of the proposed methodology under the effects of the presence of ground clutter and radio local area network interferences is discussed in the results presented.

Corresponding author address: Patricia Altube, Meteorological Service of Catalonia, Berlin 38-48, 08029 Barcelona, Spain. E-mail: paltube@meteo.cat
Save
  • Blahak, U., 2008: An approximation to the effective beam weighting function for scanning meteorological radars with an axisymmetric antenna pattern. J. Atmos. Oceanic Technol., 25, 11821196, doi:10.1175/2007JTECHA1010.1.

    • Search Google Scholar
    • Export Citation
  • Caruana, R. A., Searle R. B. , Heller T. , and Shupack S. I. , 1986: Fast algorithm for the resolution of spectra. Anal. Chem., 58, 11621167, doi:10.1021/ac00297a041.

    • Search Google Scholar
    • Export Citation
  • Collier, C. G., 2009: On the propagation of uncertainty in weather radar estimates of rainfall through hydrological models. Meteor. Appl., 16, 3540, doi:10.1002/met.120.

    • Search Google Scholar
    • Export Citation
  • Darlington, T., Kitchen M. , Sugier J. , and de Rohan-Truba J. , 2003: Automated real-time monitoring of radar sensitivity and antenna pointing accuracy. 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 7B.6. [Available online at https://ams.confex.com/ams/32BC31R5C/techprogram/paper_63543.htm.]

  • Doviak, R. J., and Zrnić D. S. , 2006: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, 592 pp.

  • Eastment, J. D., Goddard J. W. F. , Davies G. J. , Ladd D. N. , and Twort K. J. , 2001: Boresight pointing calibration for the Chilbolton radar using galactic radio sources and satellite targets. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., P1.2. [Available online at https://ams.confex.com/ams/30radar/techprogram/paper_19854.htm.]

  • Frech, M., 2009: Towards monitoring and assessing DualPol data quality. Evaluation of new technologies, OPERA III, Work Package 1.4a, EUMETNET, 2–54. [Available online at http://www.eumetnet.eu/sites/default/files/OPERA_2009_02_WP1.4a_Deliverable.pdf.]

  • Frech, M., 2013: Monitoring the data quality of the new polarimetric weather radar network of the German Meteorological Service. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 9B.3. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228472.html.]

  • Friedrich, K., Hagen M. , and Einfalt T. , 2006: A quality control concept for radar reflectivity, polarimetric parameters, and Doppler velocity. J. Atmos. Oceanic Technol., 23, 865887, doi:10.1175/JTECH1920.1.

    • Search Google Scholar
    • Export Citation
  • Frush, C. L., 1984: Using the sun as calibration aid in multiple parameter meteorological radar. Preprints, 22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 306–311.

  • Genz, A. C., and Malik A. A. , 1980: Remarks on algorithm 006: An adaptive algorithm for numerical integration over an N-dimensional rectangular region. J. Comput. Appl. Math., 6, 295302, doi:10.1016/0771-050X(80)90039-X.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., Tabary P. , and du Chatelet J. P. , 2006: Data quality of the Meteo-France C-band polarimetric radar. J. Atmos. Oceanic Technol., 23, 13401356, doi:10.1175/JTECH1912.1.

    • Search Google Scholar
    • Export Citation
  • Guo, H., 2011: A simple algorithm for fitting a Gaussian function. IEEE Signal Process. Mag., 28, 134137, doi:10.1109/MSP.2011.941846.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. L., Driscoll S. J. , and Kitchen M. , 2000: Improving precipitation estimates from weather radar using quality control and correction techniques. Meteor. Appl., 7, 135144, doi:10.1017/S1350482700001468.

    • Search Google Scholar
    • Export Citation
  • Holleman, I., 2005: Quality control and verification of weather radar wind profiles. J. Atmos. Oceanic Technol., 22, 15411550, doi:10.1175/JTECH1781.1.

    • Search Google Scholar
    • Export Citation
  • Holleman, I., and Beekhuis H. , 2004: Weather radar monitoring using the sun. KNMI Tech. Rep. TR-272, 40 pp.

  • Holleman, I., and Huuskonen A. , 2013: Analytical formulas for refraction of radiowaves from exoatmospheric sources. Radio Sci., 48, 226231, doi:10.1002/rds.20030.

    • Search Google Scholar
    • Export Citation
  • Holleman, I., van Gasteren H. , and Bouten W. , 2008: Quality assessment of weather radar wind profiles during bird migration. J. Atmos. Oceanic Technol., 25, 21882198, doi:10.1175/2008JTECHA1067.1.

    • Search Google Scholar
    • Export Citation
  • Holleman, I., Huuskonen A. , Kurri M. , and Beekhuis H. , 2010: Operational monitoring of weather radar receiving chain using the sun. J. Atmos. Oceanic Technol., 27, 159166, doi:10.1175/2009JTECHA1213.1.

    • Search Google Scholar
    • Export Citation
  • Huuskonen, A., and Holleman I. , 2007: Determining weather radar antenna pointing using signals detected from the sun at low antenna elevations. J. Atmos. Oceanic Technol., 24, 476483, doi:10.1175/JTECH1978.1.

    • Search Google Scholar
    • Export Citation
  • Huuskonen, A., Kurri M. , and Hohti H. , 2010: The use of the solar monitoring data to assess the quality and the stability of weather radar antenna systems. TECO-2010: WMO Tech. Conf. on Meteorological and Environmental Instruments and Methods of Observation, Helsinki, Finland, World Meteorological Organization, P2(9). [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-104_TECO-2010/P2_9_Huuskonen_Finland.pdf.]

  • Huuskonen, A., Kurri M. , Hohti H. , Beekhuis H. , Leijnse H. , and Holleman I. , 2014: Radar performance monitoring using the angular width of the solar image. J. Atmos. Oceanic Technol., 31, 17041712, doi:10.1175/JTECH-D-13-00246.1.

    • Search Google Scholar
    • Export Citation
  • Joe, P., 2011: The WMO radar QC QPE Inter-Comparison Project RQQI. World Meteorological Organization Doc. CIMO/IOC-RQQI -1/Doc. 2, 17 pp.

  • Lakshmanan, V., Fritz A. , Smith T. , Hondl K. , and Stumpf G. , 2007: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol., 46, 288305, doi:10.1175/JAM2460.1.

    • Search Google Scholar
    • Export Citation
  • Leskinen, M., Puhakka P. , and Puhakka T. , 2002: A method for estimating antenna beam parameters using the sun. Proceedings of the Second European Conference on Radar Meteorology, Copernicus Gesellschaft, 318323.

  • Michelson, D., Einfalt T. , Holleman I. , Gjertsen U. , Friedrich K. , Haase G. , Lindskog M. , and Jurczyk A. , 2004: Weather radar data quality in Europe: Quality control and characterization. COST-717 Working Doc. WDF_MC_200403_1, 92 pp.

  • Muth, X., Schneebeli M. , and Berne A. , 2012: A sun-tracking method to improve the pointing accuracy of weather radar. Atmos. Meas. Tech., 5, 547555, doi:10.5194/amt-5-547-2012.

    • Search Google Scholar
    • Export Citation
  • Ośródka, K., Szturc J. , and Jurczyk A. , 2014: Chain of data quality algorithms for 3-D single-polarization radar reflectivity (RADVOL-QC system). Meteor. Appl., 21, 256270, doi:10.1002/met.1323.

    • Search Google Scholar
    • Export Citation
  • Pratt, J. F., and Ferraro D. G. , 1989: Automated solar gain calibration. Preprints, 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc., 619–622.

  • Probert-Jones, J. R., 1962: The radar equation in meteorology. Quart. J. Roy. Meteor. Soc., 88, 485495, doi:10.1002/qj.49708837810.

  • Reimann, C., Filzmoser P. , Garrett R. G. , and Dutter R. , 2008: Statistical Data Analysis Explained: Applied Environmental Statistics with R. 3rd ed. John Wiley and Sons Ltd., 362 pp.

    • Search Google Scholar
    • Export Citation
  • Rossa, A., and Coauthors, 2010: Propagation of uncertainty from observing systems into NWP: COST-731 Working Group 1. Atmos. Sci. Lett., 11, 145152, doi:10.1002/asl.274.

    • Search Google Scholar
    • Export Citation
  • Saltikoff, E., Huuskonen A. , Hohti H. , Koistinen J. , and Järvinen H. , 2010: Quality assurance in the FMI Doppler weather radar network. Boreal Environ. Res., 15, 579594.

    • Search Google Scholar
    • Export Citation
  • Sprent, P., and Smeeton N. C. , 2007: Applied Nonparametric Statistical Methods. 4th ed. Chapman and Hall/CRC, 530 pp.

  • Szturc, J., Ośródka K. , and Jurczyk A. , 2011: Quality index scheme for quantitative uncertainty characterization of radar-based precipitation. Meteor. Appl., 18, 407420, doi:10.1002/met.230.

    • Search Google Scholar
    • Export Citation
  • Tapping, K., 2001: Antenna calibration using the 10.7 cm solar flux. Workshop on Radar Calibration, Albuquerque, NM, Amer. Meteor. Soc., 32 pp.

  • Vaisala, 2014: User’s manual: Digital IF receiver/Doppler signal processor, RVP8. Vaisala Oyj Doc. M211321EN-D, 522 pp.

  • Whiton, R. C., Smith P. L. , and Harbuck A. C. , 1976: Calibration of weather radar systems using the sun as a radio source. Preprints, 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 60–65.

  • WMO, 2008: Guide to meteorological instruments and methods of observation. 7th ed. World Meteorological Organization Doc. WMO-8, 681 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1428 580 153
PDF Downloads 641 140 5