CERES Synoptic Product: Methodology and Validation of Surface Radiant Flux

David A. Rutan NASA Langley Research Center, Hampton, Virginia

Search for other papers by David A. Rutan in
Current site
Google Scholar
PubMed
Close
,
Seiji Kato SSAI, Hampton, Virginia

Search for other papers by Seiji Kato in
Current site
Google Scholar
PubMed
Close
,
David R. Doelling SSAI, Hampton, Virginia

Search for other papers by David R. Doelling in
Current site
Google Scholar
PubMed
Close
,
Fred G. Rose NASA Langley Research Center, Hampton, Virginia

Search for other papers by Fred G. Rose in
Current site
Google Scholar
PubMed
Close
,
Le Trang Nguyen NASA Langley Research Center, Hampton, Virginia

Search for other papers by Le Trang Nguyen in
Current site
Google Scholar
PubMed
Close
,
Thomas E. Caldwell NASA Langley Research Center, Hampton, Virginia

Search for other papers by Thomas E. Caldwell in
Current site
Google Scholar
PubMed
Close
, and
Norman G. Loeb SSAI, Hampton, Virginia

Search for other papers by Norman G. Loeb in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Clouds and the Earth’s Radiant Energy System Synoptic (SYN1deg), edition 3, product provides climate-quality global 3-hourly 1° × 1°gridded top of atmosphere, in-atmosphere, and surface radiant fluxes. The in-atmosphere surface fluxes are computed hourly using a radiative transfer code based upon inputs from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), 3-hourly geostationary (GEO) data, and meteorological assimilation data from the Goddard Earth Observing System. The GEO visible and infrared imager calibration is tied to MODIS to ensure uniform MODIS-like cloud properties across all satellite cloud datasets. Computed surface radiant fluxes are compared to surface observations at 85 globally distributed land (37) and ocean buoy (48) sites as well as several other publicly available global surface radiant flux data products. Computed monthly mean downward fluxes from SYN1deg have a bias (standard deviation) of 3.0 W m−2 (5.7%) for shortwave and −4.0 W m−2 (2.9%) for longwave compared to surface observations. The standard deviation between surface downward shortwave flux calculations and observations at the 3-hourly time scale is reduced when the diurnal cycle of cloud changes is explicitly accounted for. The improvement is smaller for surface downward longwave flux owing to an additional sensitivity to boundary layer temperature/humidity, which has a weaker diurnal cycle compared to clouds.

Corresponding author address: David A Rutan, Science Systems and Applications Inc., 1 Enterprise Parkway, Suite 200, Hampton, VA 23666. E-mail: david.a.rutan@nasa.gov

Abstract

The Clouds and the Earth’s Radiant Energy System Synoptic (SYN1deg), edition 3, product provides climate-quality global 3-hourly 1° × 1°gridded top of atmosphere, in-atmosphere, and surface radiant fluxes. The in-atmosphere surface fluxes are computed hourly using a radiative transfer code based upon inputs from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), 3-hourly geostationary (GEO) data, and meteorological assimilation data from the Goddard Earth Observing System. The GEO visible and infrared imager calibration is tied to MODIS to ensure uniform MODIS-like cloud properties across all satellite cloud datasets. Computed surface radiant fluxes are compared to surface observations at 85 globally distributed land (37) and ocean buoy (48) sites as well as several other publicly available global surface radiant flux data products. Computed monthly mean downward fluxes from SYN1deg have a bias (standard deviation) of 3.0 W m−2 (5.7%) for shortwave and −4.0 W m−2 (2.9%) for longwave compared to surface observations. The standard deviation between surface downward shortwave flux calculations and observations at the 3-hourly time scale is reduced when the diurnal cycle of cloud changes is explicitly accounted for. The improvement is smaller for surface downward longwave flux owing to an additional sensitivity to boundary layer temperature/humidity, which has a weaker diurnal cycle compared to clouds.

Corresponding author address: David A Rutan, Science Systems and Applications Inc., 1 Enterprise Parkway, Suite 200, Hampton, VA 23666. E-mail: david.a.rutan@nasa.gov
Save
  • Augustine, J. A., DeLuisi J. J. , and Long C. N. , 2000: SURFRAD – A national surface radiation budget network for atmospheric research. Bull. Amer. Meteor. Soc., 81, 23412358, doi:10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homogeneous biases. J. Atmos. Sci., 53, 22892303, doi:10.1175/1520-0469(1996)053<2289:APFCGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and Salby M. L. , 1996: Diurnal variations of cloud cover and their relationship to climatological conditions. J. Climate, 9, 28022820, doi:10.1175/1520-0442(1996)009<2802:DVOCCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bloom, S., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) Data Assimilation System—Version 4. M. J. Suarez, Ed., Technical Report Series on Global Modeling and Data Assimilation, Vol. 26, NASA Tech. Rep. NASA/TM-2005-104606, 187 pp.

  • Cairns, B., 1995: Diurnal variation of cloud from ISCCP data. Atmos. Res., 37, 133146, doi:10.1016/0169-8095(94)00074-N.

  • Collins, W. D., Rasch P. J. , Eaton B. E. , Khattatov B. V. , Lamarque J.-F. , and Zender C. S. , 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106, 73137336, doi:10.1029/2000JD900507.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dilley, A. C., and O’Brien D. M. , 1998: Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Quart. J. Roy. Meteor. Soc., 124, 13911401, doi:10.1002/qj.49712454903.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, doi:10.1175/JTECH-D-12-00136.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and Liou K.-N. , 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., Lesins G. , Higgins J. , Charlock T. , Chylek P. , and Michalsky J. , 1998: Broadband water vapor absorption of solar radiation tested using ARM data. Geophys. Res. Lett., 25, 11691172, doi:10.1029/98GL00846.

    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., L’Ecuyer T. , Stephens G. , Partain P. , and Sekiguchi M. , 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol, 52, 853871, doi:10.1175/JAMC-D-12-025.1.

    • Search Google Scholar
    • Export Citation
  • Hess, M., Koepke P. , and Schult I. , 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, doi:10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., Charlock T. P. , Smith W. L. Jr., and Rutledge K. , 2004: A parameterization of ocean surface albedo. Geophys. Res. Lett., 31, L22301, doi:10.1029/2004GL021180.

    • Search Google Scholar
    • Export Citation
  • Kato, S., Ackerman T. , Mather J. , and Clothiaux E. , 1999: The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109121, doi:10.1016/S0022-4073(98)00075-2.

    • Search Google Scholar
    • Export Citation
  • Kato, S., Rose F. G. , and Charlock T. P. , 2005: Computation of domain-averaged irradiance using satellite-derived cloud properties. J. Atmos. Oceanic Technol., 22, 146164, doi:10.1175/JTECH-1694.1.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Improvements of top‐of‐atmosphere and surface irradiance computations with CALIPSO‐, CloudSat‐, and MODIS‐derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • Kato, S., Loeb N. G. , Rose F. G. , Doelling D. R. , Rutan D. A. , Caldwell T. E. , Yu L. , and Weller R. A. , 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate,26, 2719–2740, doi:10.1175/JCLI-D-12-00436.1.

  • Kratz, D. P., and Rose F. G. , 1999: Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer, 61, 8395, doi:10.1016/S0022-4073(97)00203-3.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Wielicki B. A. , Doelling D. R. , Smith G. L. , Keyes D. F. , Kato S. , Manalo-Smith N. , and Wong T. , 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Kato S. , Su W. , Wong T. , Rose F. G. , Doelling D. R. , Norris J. R. , and Huang X. , 2012: Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv. Geophys., 33, 359–385, doi:10.1007/s10712-012-9175-1.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and Ackerman T. P. , 2000: Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J. Geophys. Res., 105, 15 60915 626, doi:10.1029/2000JD900077.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2002: TAO/TRITON tracks Pacific Ocean warming in early 2002. CLIVAR Exchanges, No. 24, International CLIVAR Project Office, Southampton, United Kingdom, 7–9.

  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, doi:10.1175/2008BAMS2608.1.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Harrison E. F. , 1984: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data, Part II: November 1978 cloud results. J. Climate Appl. Meteor., 23, 10121031, doi:10.1175/1520-0450(1984)023<1012:DVORCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., Smith W. L. Jr., Garber D. P. , Ayers J. K. , and Doelling D. R. , 1995: Cloud properties derived from GOES-7 for spring 1994 ARM intensive observing period using version 1.0.0 of ARM satellite data analysis program. NASA Reference Publ. 1366, 59 pp.

  • Minnis, P., and Coauthors, 2011a: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, doi:10.1109/TGRS.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011b: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens., 49, 4401–4430, 10.1109/TGRS.2011.2144602.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate change research. Bull. Amer. Meteor. Soc., 79, 21152136, doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and Barker H. W. , 1999: Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125, 301330, doi:10.1002/qj.49712555316.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., and Laszlo I. , 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194211, doi:10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973, doi:10.1175/JAS3385.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Gilson J. , 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr.,82, 81–100, doi:10.1016/j.pocean.2009.03.004.

  • Rose, F. G., Charlock T. , Fu Q. , Kato S. , Rutan D. , and Jin Z. , 2006: CERES proto-edition_3 radiative transfer: Model tests and radiative closure over surface validation sites. 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., P2.4. [Available online at https://ams.confex.com/ams/Madison2006/techprogram/paper_112358.htm.]

  • Rose, F. G., Rutan D. A. , Charlock T. , Smith G. L. , and Kato S. , 2013: An algorithm for the constraining of radiative transfer calculations to CERES-observed broadband top-of-atmosphere irradiance. J. Atmos. Oceanic Technol., 30, 10911106, doi:10.1175/JTECH-D-12-00058.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Schiffer R. A. , 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Schiffer R. A. , 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., Leovy C. B. , and Klein S. A. , 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8, 17951809, doi:10.1175/1520-0442(1995)008<1795:AOSODV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutan, D., Rose F. , Roman M. , Manalo-Smith N. , Schaaf C. , and Charlock T. , 2009: Development and assessment of broadband surface albedo from Clouds and the Earth’s Radiant Energy System clouds and radiation swath data product. J. Geophys. Res., 114, D08125, doi:10.1029/2008JD010669.

    • Search Google Scholar
    • Export Citation
  • Servain, J., Busalacchi A. J. , McPhaden M. J. , Moura A. D. , Reverdin G. , Vianna M. , and Zebiak S. E. , 1998: A Pilot Research Moored Array in the Tropical Atlantic (PIRATA). Bull. Amer. Meteor. Soc., 79, 20192031, doi:10.1175/1520-0477(1998)079<2019:APRMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., Hodges K. I. , and Robinson G. J. , 2004: Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7. Quart. J. Roy. Meteor. Soc., 130, 14491467, doi:10.1256/qj.03.165.

    • Search Google Scholar
    • Export Citation
  • Smith, G. L., Priestley K. J. , Loeb N. G. , Wielicki B. A. , Charlock T. P. , Minnis P. , Doelling D. R. , and Rutan D. A. , 2011: Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future. Adv. Space Res., 48, 254263, doi:10.1016/j.asr.2011.03.009.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., Gupta S. K. , Cox S. J. , Zhang T. , Mikovitz J. C. , and Hinkelman L. M. , 2011: 24.5-year SRB data set released. GEWEX News, No. 1, International GEWEX Project Office, Silver Spring, MD, 10–12.

  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 681–696, doi:10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Swinbank, W. C., 1963: Long-wave radiation from clear skies. Quart. J. Roy. Meteor. Soc., 89, 339348, doi:10.1002/qj.49708938105.

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., 2012: Tropical outgoing longwave radiation and longwave cloud forcing diurnal cycles from CERES. J. Atmos. Sci., 69, 36523669, doi:10.1175/JAS-D-12-088.1.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., and Lacis A. A. , 1996: Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res., 101, 19 23719 244, doi:10.1029/95JD03610.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., McKay C. P. , Ackerman T. P. , and Santhanam K. , 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16 28716 301, doi:10.1029/JD094iD13p16287.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Fasullo J. T. , and Kiehl J. , 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323, doi:10.1175/2008BAMS2634.1.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., Barkstrom B. R. , Harrison E. F. , Lee R. B. III, Smith G. L. , and Cooper J. E. , 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilber, A. C., Kratz D. P. , Gupta S. K. , 1999: Surface emissivity maps for use in satellite retrievals of longwave radiation. NASA Tech. Publ. NASA/TP-1999-209362, 35 pp.

  • Yang, S.-K., Zhou S. , and Miller A. J. , 1998: SMOBA: A 3-dimensional daily ozone analysis using SBUV/2 and TOVS measurements. Accessed 6 January 2015. [Available online at http://www.cpc.ncep.noaa.gov/products/stratosphere/SMOBA/smoba_doc.shtml.]

  • Zhang, Y.-C., Rossow W. B. , and Lacis A. A. , 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method and sensitivity to input data uncertainties. J. Geophys. Res., 100, 11491165, doi:10.1029/94JD02747.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., Rossow W. B. , Lacis A. A. , Oinas V. , and Mishchenko M. I. , 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res.,109, D19105, doi:10.1029/2003JD004457.

  • Zhang, Y.-C., Rossow W. B. , and Stackhouse P. W. Jr., 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere. J. Geophys. Res., 111, D13106, doi:10.1029/2005JD006873.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4753 2007 347
PDF Downloads 2616 606 47