• Aydin, K., , Seliga T. A. , , and Balaji V. , 1986: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, doi:10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., , and Zrnić D. S. , 1990: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci., 47, 565583, doi:10.1175/1520-0469(1990)047<0565:EORAHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere.University of Chicago Press, 324 pp.

  • Bluestein, H. B., 1992: Principles of Kinematics and Dynamics. Vol. 1, Synoptic–Dynamic Meteorology in Midlatitudes,Oxford University Press, 448 pp.

  • Brandes, E. A., , Vivekanandan J. , , Tuttle J. D. , , and Kessinger C. J. , 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143, doi:10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications.Cambridge University Press, 636 pp.

  • Bringi, V. N., , and Thurai M. , 2008: Preliminary assessment and analysis of CP2 S and X band data. BMRC Internal Rep., 6 pp.

  • Bringi, V. N., , Williams C. R. , , Thurai M. , , and May P. T. , 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 21072122, doi:10.1175/2009JTECHA1258.1.

    • Search Google Scholar
    • Export Citation
  • Caine, S., , Jakob C. , , Siems S. , , and May P. , 2009: Objective classification of precipitating convective regimes using a weather radar in Darwin, Australia. Mon. Wea. Rev., 137, 15851600, doi:10.1175/2008MWR2532.1.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., , Bringi V. N. , , Rutledge S. A. , , Hou A. , , Smith E. , , Jackson G. S. , , Gorgucci E. , , and Petersen W. A. , 2008: Potential role of dual-polarization radar in the validation of satellite precipitation measurements: Rationale and opportunities. Bull. Amer. Meteor. Soc., 89, 11271145, doi:10.1175/2008BAMS2177.1.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., , Keränen R. , , Lim S. , , and Moisseev D. , 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97–111, doi:10.1016/j.atmosres.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • Chéruy, F., , and Aires F. , 2009: Cluster analysis of cloud properties over the southern European Mediterranean area in observations and a model. Mon. Wea. Rev., 137, 31613176, doi:10.1175/2009MWR2882.1.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., , Chandrasekar V. , , Lim S. , , Kennedy P. C. , , Wang Y. , , and Rutledge S. A. , 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Oceanic Technol., 28, 352364, doi:10.1175/2010JTECHA1488.1.

    • Search Google Scholar
    • Export Citation
  • Dempster, A. P., , Laird N. M. , , and Rubin D. B. , 1977: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc., 39B, 138.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., , and Rutledge S. A. , 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, doi:10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., , and Zrnić D. S. , 2006: Doppler Radar and Weather Observations.2nd ed. Dover Publications, Inc., 562 pp.

  • Dufournet, Y., , and Russchenberg H. , 2011: Towards the improvement of cloud microphysical retrievals using simultaneous Doppler and polarimetric radar measurements. Atmos. Meas. Tech. Discuss., 4, 527562, doi:10.5194/amtd-4-527-2011.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., 2011: The NSSL hydrometeor classification algorithm in winter surface precipitation: Evaluation and future development. Wea. Forecasting, 26, 756765, doi:10.1175/WAF-D-10-05011.1.

    • Search Google Scholar
    • Export Citation
  • Fereday, D. R., , Knight J. R. , , Scaife A. A. , , Folland C. K. , , and Philipp A. , 2008: Cluster analysis of North Atlantic–European circulation types and links with tropical Pacific sea surface temperatures. J. Climate, 21, 36873703, doi:10.1175/2007JCLI1875.1.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., , and Ryzhkov A. V. , 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, doi:10.1175/2008JAMC1753.1.

    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., , Goddard J. W. F. , , and Cherry S. M. , 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140, doi:10.1029/RS019i001p00132.

    • Search Google Scholar
    • Export Citation
  • Hastie, T., , Tibshirani R. , , and Friedman J. , 2009: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer Series in Statistics, Springer, 745 pp.

  • Illingworth, A. J., , Goddard J. W. F. , , and Cherry S. M. , 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, doi:10.1002/qj.49711347604.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., , Tselioudis G. , , and Hume T. , 2005: The radiative, cloud, and thermodynamic properties of the major tropical western pacific cloud regimes. J. Climate, 18, 12031215, doi:10.1175/JCLI3326.1.

    • Search Google Scholar
    • Export Citation
  • Keenan, T., 2003: Hydrometeor classification with a C-band polarimetric radar. Aust. Meteor. Mag., 52, 2331.

  • Li, Z., 2011: Applications of Gaussian mixture model to weather observations. Ph.D. dissertation, University of Oklahoma, 206 pp.

  • Lim, S., , Chandrasekar V. , , and Bringi V. N. , 2005: Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote, 43, 792801, doi:10.1109/TGRS.2004.843077.

    • Search Google Scholar
    • Export Citation
  • Liu, H., , and Chandrasekar V. , 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, doi:10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., , Scaranari D. , , and Vulpiani G. , 2007: Supervised fuzzy-logic classification of hydrometeors using C-band weather radars. IEEE Trans. Geosci. Remote, 45, 37843799, doi:10.1109/TGRS.2007.903399.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., , Scaranari D. , , Montopoli M. , , and Vulpiani G. , 2008: Supervised classification and estimation of hydrometeors from C-band dual-polarized radars: A Bayesian approach. IEEE Trans. Geosci. Remote, 46, 8598, doi:10.1109/TGRS.2007.906476.

    • Search Google Scholar
    • Export Citation
  • Marzban, C., , and Sandgathe S. , 2006: Cluster analysis for verification of precipitation fields. Wea. Forecasting, 21, 824838, doi:10.1175/WAF948.1.

    • Search Google Scholar
    • Export Citation
  • May, P. T., , Jameson A. R. , , Keenan T. D. , , and Johnston P. E. , 2001: A comparison between polarimetric radar and wind profiler observations of precipitation in tropical showers. J. Appl. Meteor., 40, 17021717, doi:10.1175/1520-0450(2001)040<1702:ACBPRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McLachlan, G. J., , and Peel D. , 2000: Finite Mixture Models.Wiley Series in Probability and Statistics, Vol. 299, Wiley-Interscience, 456 pp.

  • Park, H. S., , Ryzhkov A. V. , , Zrnić D. S. , , and Kim K.-E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., , and May P. T. , 2012: A robust error-based rain estimation method for polarimetric radar. Part II: Case study. J. Appl. Meteor. Climatol., 51, 17021713, doi:10.1175/JAMC-D-11-0159.1.

    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., , May P. T. , , and Thurai M. , 2011: A robust error-based rain estimation method for polarimetric radar. Part I: Development of a method. J. Appl. Meteor. Climatol., 50, 20922103, doi:10.1175/JAMC-D-10-05029.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and Klett J. D. , 1996: Microphysics of Clouds and Precipitation.Atmospheric and Oceanographic Sciences Library, Vol. 18, Kluwer Academic Publishers, 954 pp.

  • Rao, C. R., 2009: Linear Statistical Inference and Its Applications.2nd ed. Wiley Series in Probability and Statistics, Vol. 22, John Wiley and Sons, 656 pp.

  • Runnalls, A. R., 2007: Kullback-Leibler approach to Gaussian mixture reduction. IEEE Trans. Aerosp. Electron. Syst., 43, 989999, doi:10.1109/TAES.2007.4383588.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , and Zrnić D. S. , 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240, doi:10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Zrnić D. S. , , and Gordon B. A. , 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134, doi:10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Schuur T. J. , , Burgess D. W. , , Heinselman P. L. , , Giangrande S. E. , , and Zrnic D. S. , 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., , Ryzhkov A. , , and Heinselman P. , 2003: Observations and classification of echoes with the polarimetric WSR-88D radar. NOAA/NSSL Rep., 46 pp. [Available online at http://www.nssl.noaa.gov/publications/wsr88d_reports/JPOLE_Obs_and_Classification_of_Echoes_Report.pdf.]

  • Schuur, T. J., , Park H.-S. , , Ryzhkov A. V. , , and Reeves H. D. , 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763–779, doi:10.1175/JAMC-D-11-091.1.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., , and Bringi V. N. , 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, doi:10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., , Aydin K. , , and Balaji V. , 1986: Dual polarization radar observation of hail producing supercell storm during MAY-POLE. Preprints, 23th Conf. on Radar Meteorology, Snowmass, CO, Amer. Meteor. Soc., 78–82.

  • Straka, J. M., 1996: Hydrometeor fields in a supercell storm as deduced from dual polarization radar. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 551–554.

  • Straka, J. M., , and Zrnić D. S. , 1993: An algorithm to deduce hydrometeor types and contents from multi-parameter radar data. Preprints, 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 513–515.

  • Straka, J. M., , Zrnić D. S. , , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., , Rutledge S. A. , , Dolan B. , , Chandrasekar V. , , and Cheong B. L. , 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 1457–1481, doi:10.1175/JTECH-D-13-00119.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , Ellis S. M. , , Oye R. , , Zrnić D. S. , , Ryzhkov A. V. , , and Straka J. , 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences.3rd ed. International Geophysics Series, Vol. 100, Academic Press, 676 pp.

  • Williams, C. R., , White A. B. , , Gage K. S. , , and Ralph F. M. , 2007: Vertical structure of precipitation and related microphysics observed by NOAA profilers and TRMM during NAME 2004. J. Climate, 20, 16931712, doi:10.1175/JCLI4102.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., , Ryzhkov A. , , Straka J. , , Liu Y. , , and Vivekanandan J. , 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892913, doi:10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 15
PDF Downloads 27 27 7

A Cluster-Based Method for Hydrometeor Classification Using Polarimetric Variables. Part I: Interpretation and Analysis

View More View Less
  • 1 LACS, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 2 Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia
  • 3 University of Melbourne, Melbourne, Victoria, Australia
© Get Permissions
Restricted access

Abstract

Hydrometeor classification methods using polarimetric radar variables rely on probability density functions (PDFs) or membership functions derived empirically or by using electromagnetic scattering calculations. This paper describes an objective approach based on cluster analysis to deriving the PDFs. An iterative procedure with K-means clustering and expectation–maximization clustering based on Gaussian mixture models is developed to generate a series of prototypes for each hydrometeor type from several radar scans. The prototypes are then grouped together to produce a PDF for each hydrometeor type, which is modeled as a Gaussian mixture. The cluster-based method is applied to polarimetric radar data collected with the CP-2 S-band radar near Brisbane, Queensland, Australia. The results are illustrated and compared with theoretical classification boundaries in the literature. Some notable differences are found. Automated hydrometeor classification algorithms can be built using the PDFs of polarimetric variables associated with each hydrometeor type presented in this paper.

Corresponding author address: Guang Wen, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: g.wen@student.unimelb.edu.au

Abstract

Hydrometeor classification methods using polarimetric radar variables rely on probability density functions (PDFs) or membership functions derived empirically or by using electromagnetic scattering calculations. This paper describes an objective approach based on cluster analysis to deriving the PDFs. An iterative procedure with K-means clustering and expectation–maximization clustering based on Gaussian mixture models is developed to generate a series of prototypes for each hydrometeor type from several radar scans. The prototypes are then grouped together to produce a PDF for each hydrometeor type, which is modeled as a Gaussian mixture. The cluster-based method is applied to polarimetric radar data collected with the CP-2 S-band radar near Brisbane, Queensland, Australia. The results are illustrated and compared with theoretical classification boundaries in the literature. Some notable differences are found. Automated hydrometeor classification algorithms can be built using the PDFs of polarimetric variables associated with each hydrometeor type presented in this paper.

Corresponding author address: Guang Wen, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: g.wen@student.unimelb.edu.au
Save