• Adam, M., , Kovalev V. A. , , Wold C. , , Newton J. , , Pahlow M. , , Hao W. M. , , and Parlange M. B. , 2007: Application of the Kano–Hamilton multiangle inversion method in clear atmospheres. J. Atmos. Oceanic Technol., 24, 20142028, doi:10.1175/2007JTECHA946.1.

    • Search Google Scholar
    • Export Citation
  • Adler-Golden, S. M., , and Slusser J. R. , 2007: Comparison of plotting methods for solar radiometer calibration. J. Atmos. Oceanic Technol., 24, 935938, doi:10.1175/JTECH2012.1.

    • Search Google Scholar
    • Export Citation
  • Alados-Arboledas, L., , Müller D. , , Guerrero-Rascado J. L. , , Navas-Guzmán F. , , Pérez-Ramírez D. , , and Olmo F. J. , 2011: Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star-and sun-photometry. Geophys. Res. Lett.,38, L01807, doi:10.1029/2010GL045999.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., , and Müller D. , 2005: Lidar and atmospheric aerosol particles. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, Ed., Springer Series in Optical Sciences, Vol. 102, Springer, 105–141.

    • Search Google Scholar
    • Export Citation
  • Bergant, K., , Filipi A. , , Horvat M. , , Veberi D. , , Zavrtanik D. , , and Zavrtanik M. , 2004: Multiangle lidar approach for estimation of optical thickness and backscatter coefficient ratio of the atmosphere. Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, and B. Warmbein, Eds., Vol. 1, ESA SP-561, 541–544.

  • Bodhaine, B. A., , Wood N. B. , , Dutton E. G. , , and Slusser J. R. , 1999: On Rayleigh optical depth calculations. J. Atmos. Oceanic Technol., 16, 18541861, doi:10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burton, S. P., , Ferrare R. A. , , Vaughan M. A. , , Omar A. H. , , Rogers R. R. , , Hostetler C. A. , , and Hair J. W. , 2013: Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask. Atmos. Meas. Tech., 6, 13971412, doi:10.5194/amt-6-1397-2013.

    • Search Google Scholar
    • Export Citation
  • Di Teodoro, F., , Belden P. , , Ionov P. , , Werner N. , , and Fathi G. , 2014: Development of pulsed fiber lasers for long-range remote sensing. Opt. Eng., 53, 036105, doi:10.1117/1.OE.53.3.036105.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R., and Coauthors, 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains. J. Geophys. Res.,111, D05S08, doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Fishman, J., , Brackett V. G. , , Browell E. V. , , and Grant W. B. , 1996: Tropospheric ozone derived from TOMS/SBUV measurements during TRACE A. J. Geophys. Res., 101, 24 06924 082, doi:10.1029/95JD03576.

    • Search Google Scholar
    • Export Citation
  • Hair, J. W., and Coauthors, 2008: Airborne High Spectral Resolution Lidar for profiling aerosol optical properties. Appl. Opt., 47, 67346752, doi:10.1364/AO.47.006734.

    • Search Google Scholar
    • Export Citation
  • Hamilton, P., 1969: Lidar measurement of backscatter and attenuation of atmospheric aerosol. Atmos. Environ., 3, 221, doi:10.1016/0004-6981(69)90010-9.

    • Search Google Scholar
    • Export Citation
  • Harwood, M. H., , and Jones R. L. , 1994: Temperature dependent ultraviolet-visible absorption cross-sections of N2O and N2O4: Low-temperature measurements of the equilibrium constant for 2NO2 ⇌ N2O4. J. Geophys. Res., 99, 22 95522 964, doi:10.1029/94JD01635.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, doi:10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., and Coauthors, 2007: Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. J. Geophys. Res.,112, D18205, doi:10.1029/2006JD008175.

    • Search Google Scholar
    • Export Citation
  • Kano, M., 1968: On the determination of backscattering and extinction coefficient of atmosphere by using a laser radar. Pap. Meteor. Geophys., 19, 121–129, doi:10.2467/mripapers1950.19.1_121.

    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt., 20, 211220, doi:10.1364/AO.20.000211.

    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., , and de Leeuw G. H. , 2009: Satellite Aerosol Remote Sensing over Land. Environmental Sciences, Springer, 388 pp.

  • Kovalev, V., , Wold C. , , Petkov A. , , and Hao W. M. , 2011: Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres. Appl. Opt., 50, 49574966, doi:10.1364/AO.50.004957.

    • Search Google Scholar
    • Export Citation
  • Kovalev, V., , Wold C. , , Petkov A. , , and Hao W. M. , 2012: Direct multiangle solution for poorly stratified atmospheres. Appl. Opt., 51, 61396146, doi:10.1364/AO.51.006139.

    • Search Google Scholar
    • Export Citation
  • Müller, D., , Wandinger U. , , Althausen D. , , and Fiebig M. , 2001: Comprehensive particle characterization from three-wavelength Raman-lidar observations: Case study. Appl. Opt., 40, 48634869, doi:10.1364/AO.40.004863.

    • Search Google Scholar
    • Export Citation
  • Müller, D., , Kolgotin A. , , Mattis I. , , Petzold A. , , and Stohl A. , 2011: Vertical profiles of microphysical particle properties derived from inversion with two-dimensional regularization of multiwavelength Raman lidar data: experiment. Appl. Opt., 50, 20692079, doi:10.1364/AO.50.002069.

    • Search Google Scholar
    • Export Citation
  • NASA, 2014: AERONET update. [Available online at http://aeronet.gsfc.nasa.gov/.]

  • NOAA NCDC, 2013: Quality controlled local climatological data (QCLCD). [Available online at http://cdo.ncdc.noaa.gov/qclcd/QCLCD.]

  • Pahlow, M., , Kovalev V. A. , , and Parlange M. B. , 2004: Calibration method for multiangle lidar measurements. Appl. Opt., 43, 29482956, doi:10.1364/AO.43.002948.

    • Search Google Scholar
    • Export Citation
  • Sander, S. P., and Coauthors, 2011: Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation 17, JPL Publ. 10-6, 684 pp. [Available online at http://jpldataeval.jpl.nasa.gov.]

  • Schaub, D., , Boersma K. F. , , Kaiser J. W. , , Weiss A. K. , , Folini D. , , Eskes H. J. , , and Buchmann B. , 2006: Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements. Atmos. Chem. Phys., 6, 32113229, doi:10.5194/acp-6-3211-2006.

    • Search Google Scholar
    • Export Citation
  • Shipley, S. T., , Tracy D. H. , , Eloranta E. W. , , Trauger J. T. , , Sroga J. T. , , Roesler F. L. , , and Weinman J. A. , 1983: High spectral resolution lidar to measure optical-scattering properties of atmospheric aerosols. 1: Theory and instrumentation. Appl. Opt., 22, 37163724, doi:10.1364/AO.22.003716.

    • Search Google Scholar
    • Export Citation
  • Sicard, M., , Chazette P. , , Pelon J. , , Won J. G. , , and Yoon S. C. , 2002: Variational method for the retrieval of the optical thickness and the backscatter coefficient from multiangle lidar profiles. Appl. Opt., 41, 493502, doi:10.1364/AO.41.000493.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., , Reagan J. A. , , and Herman B. M. , 1980: Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique. J. Appl. Meteor., 19, 426438, doi:10.1175/1520-0450(1980)019<0426:VDOAEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sroga, J. T., , Eloranta E. W. , , Shipley S. T. , , Roesler F. L. , , and Tryon P. J. , 1983: High spectral resolution lidar to measure optical-scattering properties of atmospheric aerosols. 2: Calibration and data analysis. Appl. Opt., 22, 37253732, doi:10.1364/AO.22.003725.

    • Search Google Scholar
    • Export Citation
  • Zaun, N. H., , Weimer C. , , Sidorin Y. , , and Lunt D. , 2004: Solid-etalon for the CALIPSO lidar receiver. Earth Observing Systems IX, W. L. Barnes and J. J. Butler, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5542), 141, doi:10.1117/12.559883.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 15
PDF Downloads 25 25 14

Aerosol Optical Thickness Measurement with Elevation-Scanning Lidar

View More View Less
  • 1 The Aerospace Corporation, Los Angeles, California
© Get Permissions
Restricted access

Abstract

High-accuracy measurement of aerosol optical thickness (AOT) τa with an elevation-scanning lidar is demonstrated and the results are compared with a collocated Cimel 318 sun photometer. Linear regression of the time-coincident data from a 2-week measurement campaign with the two instruments is found to be τalidar = (1.00 ± 0.17)τaphot + (0.025 ± 0.019) (1σ). The method proved to have sufficient accuracy to measure AOTs of 0.1–0.2 commonly seen in relatively clear atmosphere. The measurement is absolute and thus does not depend on any external calibration standards.

Denotes Open Access content.

Corresponding author address: Pavel Ionov, The Aerospace Corporation, M2/253, P.O. Box 92957, Los Angeles, CA 90009-2957. E-mail: pavel.ionov@aero.org

Abstract

High-accuracy measurement of aerosol optical thickness (AOT) τa with an elevation-scanning lidar is demonstrated and the results are compared with a collocated Cimel 318 sun photometer. Linear regression of the time-coincident data from a 2-week measurement campaign with the two instruments is found to be τalidar = (1.00 ± 0.17)τaphot + (0.025 ± 0.019) (1σ). The method proved to have sufficient accuracy to measure AOTs of 0.1–0.2 commonly seen in relatively clear atmosphere. The measurement is absolute and thus does not depend on any external calibration standards.

Denotes Open Access content.

Corresponding author address: Pavel Ionov, The Aerospace Corporation, M2/253, P.O. Box 92957, Los Angeles, CA 90009-2957. E-mail: pavel.ionov@aero.org
Save