• Bachmann, S., , and Zrnić D. , 2008: Three-dimensional attributes of clear-air scatterers observed with the polarimetric weather radar. IEEE Geosci. Remote Sensing, 5, 231235, doi:10.1109/LGRS.2008.915745.

    • Search Google Scholar
    • Export Citation
  • Dance, S. L., 2004: Issues in high resolution limited area data assimilation for quantitative precipitation forecasting. Physica D, 196, 127, doi:10.1016/j.physd.2004.05.001.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., , Kessinger C. , , and Hubbert J. , 2005: Echo classification and spectral processing for the discrimination of clutter from weather. 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P4R.6. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_95987.htm.]

  • Dokter, A. M., , Liechti F. , , Stark H. , , Delobbe L. , , Tabary P. , , and Holleman I. , 2011: Bird migration flight altitudes studied by a network of operational weather radars. J. Roy. Soc. Interface, 8, 3043, doi:10.1098/rsif.2010.0116.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., , and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Fabry, F., 2010: Radial velocity measurement simulations: Common errors, approximations, or omissions and their impact on estimation accuracy. Proc. Sixth European Conf. on Radar in Meteorology and Hydrology, Sibiu, Romania, ERAD, 7 pp. [Available online at http://www.erad2010.org/pdf/oral/thursday/nwp1/02_ERAD2010_0154.pdf.]

  • Friedman, N., , Geiger D. , , and Goldszmidt M. , 1997: Bayesian network classifiers. Mach. Learn., 29, 131163, doi:10.1023/A:1007465528199.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., , Dixon M. , , and Ellis S. M. , 2009: Weather radar ground clutter. Part II: Real-time identification and filtering. J. Atmos. Oceanic Technol., 26, 11811197, doi:10.1175/2009JTECHA1160.1.

    • Search Google Scholar
    • Export Citation
  • Izenmann, A. J., 1991: Recent developments in nonparametric density estimation. J. Amer. Stat. Assoc., 86, 205225.

  • Keenan, T., , Wilson J. , , Lutz J. , , Glasson K. , , and May P. T. , 2007: Rationale and use of the CP2 testbed in Brisbane, Australia. 33rd Conf. on Radar Meteorology, Cairns, QLD, Australia, Amer. Meteor. Soc., 12B.1. [Available online at https://ams.confex.com/ams/33Radar/techprogram/paper_123253.htm.]

  • Kessinger, C., , Ellis S. , , Van Andel J. , , Yee J. , , and Hubbert J. , 2005: The AP ground clutter mitigation scheme for the WSR-88D. 20th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Diego, CA, Amer. Meteor. Soc., P1.5. [Available online at https://ams.confex.com/ams/pdfpapers/86549.pdf.]

  • Koistinen, J., , Mäkinen T. , , and Pulkkinen S. , 2009: Classification of meteorological and non-meteorological targets with principal component analysis applying conventional polarimetric parameters and their texture. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 10A.3. [Available online at https://ams.confex.com/ams/34Radar/techprogram/paper_155348.htm.]

  • Lakshmanan, V., , Fritz A. , , Smith T. , , Hondl K. , , and Stumpf G. , 2007: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol., 46, 288305, doi:10.1175/JAM2460.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., , Zhang J. , , and Howard K. W. , 2010: A technique to censor biological echoes in radar reflectivity data. J. Appl. Meteor. Climatol., 49, 453465, doi:10.1175/2009JAMC2255.1.

    • Search Google Scholar
    • Export Citation
  • Michelson, D., , Lewandowski R. , , Szewczykowski M. , , and Beekhuis H. , 2011: EUMETNET OPERA weather radar information model for implementation with the HDF5 file format. Version 2.1, EUMETNET OPERA Working Doc. WD_2008_03, 36 pp.

  • Moszkowicz, S., , Ciach G. J. , , and Krajewski W. F. , 1994: Statistical detection of anomalous propagation in radar reflectivity patterns. J. Atmos. Oceanic Technol., 11, 10261034, doi:10.1175/1520-0426(1994)011<1026:SDOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peter, J. R., , Seed A. , , and Steinle P. , 2013: Application of a Bayesian classifier of anomalous propagation to single-polarization radar reflectivity data. J. Atmos. Oceanic Technol., 30, 19852005, doi:10.1175/JTECH-D-12-00082.1.

    • Search Google Scholar
    • Export Citation
  • Puri, K., and Coauthors, 2010: Preliminary results from Numerical Weather Prediction implementation of ACCESS. CAWCR Research Letters, No. 5, CAWCR, Melbourne, VIC, Australia, 15–22.

  • Rabier, F., , Klinker E. , , Courtier P. , , and Hollingsworth A. , 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122, 121150, doi:10.1002/qj.49712252906.

    • Search Google Scholar
    • Export Citation
  • Rennie, S. J., 2012: Doppler weather radar in Australia. CAWCR Tech. Rep. 55, 52 pp.

  • Rennie, S. J., , Curtis M. , , Peter J. R. , , Seed A. W. , , and Steinle P. J. , 2014: Training the Ancilla Naïve Bayes Classification System to provide quality control for weather radar data. CAWCR Tech. Rep. 73, 88 pp.

  • Salonen, K., , Haase G. , , Eresmaa R. , , Hohti H. , , and Järvinen H. , 2011: Towards the operational use of Doppler radar radial winds in HIRLAM. Atmos. Res., 100, 190200, doi:10.1016/j.atmosres.2010.06.004.

    • Search Google Scholar
    • Export Citation
  • Schuur, T., , Ryzhkov A. , , and Heinselman P. , 2003: Observations and classification of echoes with the polarimetric WSR-88D radar. NOAA/NSSL Rep., 45 pp.

  • Simonin, D., , Ballard S. P. , , and Li Z. , 2014: Doppler radar radial wind assimilation using an hourly cycling 3D-Var with a 1.5 km resolution version of the Met Office Unified Model for nowcasting. Quart. J. Roy. Meteor. Soc., 140, 22982314, doi:10.1002/qj.2298.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , and Smith J. A. , 2002: Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J. Atmos. Oceanic Technol., 19, 673686, doi:10.1175/1520-0426(2002)019<0673:UOTDRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2005: Convective-scale assimilation of radar data: Progress and challenges. Quart. J. Roy. Meteor. Soc., 131, 34393463, doi:10.1256/qj.05.149.

    • Search Google Scholar
    • Export Citation
  • Wen, G., 2014: A study on hydrometeor classification with polarimetric variables. Ph.D. thesis, Dept. of Electrical and Electronic Engineering, University of Melbourne, 137 pp.

  • Zhao, Q., , Cook J. , , Xu Q. , , and Harasti P. R. , 2008: Improving short-term storm predictions by assimilating both radar radial-wind and reflectivity observations. Wea. Forecasting, 23, 373391, doi:10.1175/2007WAF2007038.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 4
PDF Downloads 13 13 3

Bayesian Echo Classification for Australian Single-Polarization Weather Radar with Application to Assimilation of Radial Velocity Observations

View More View Less
  • 1 Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia
  • 2 Meteorological Observation Center, China Meteorological Administration, Beijing, China
© Get Permissions
Restricted access

Abstract

The Australian Bureau of Meteorology’s operational weather radar network comprises a heterogeneous radar collection covering diverse geography and climate. A naïve Bayes classifier has been developed to identify a range of common echo types observed with these radars. The success of the classifier has been evaluated against its training dataset and by routine monitoring. The training data indicate that more than 90% of precipitation may be identified correctly. The echo types most difficult to distinguish from rainfall are smoke, chaff, and anomalous propagation ground and sea clutter. Their impact depends on their climatological frequency. Small quantities of frequently misclassified persistent echo (like permanent ground clutter or insects) can also cause quality control issues. The Bayes classifier is demonstrated to perform better than a simple threshold method, particularly for reducing misclassification of clutter as precipitation. However, the result depends on finding a balance between excluding precipitation and including erroneous echo. Unlike many single-polarization classifiers that are only intended to extract precipitation echo, the Bayes classifier also discriminates types of nonprecipitation echo. Therefore, the classifier provides the means to utilize clear air echo for applications like data assimilation, and the class information will permit separate data handling of different echo types.

Corresponding author address: S. J. Rennie, Bureau of Meteorology, GPO Box 1289, Melbourne VIC 3001, Australia. E-mail: s.rennie@bom.gov.au

Abstract

The Australian Bureau of Meteorology’s operational weather radar network comprises a heterogeneous radar collection covering diverse geography and climate. A naïve Bayes classifier has been developed to identify a range of common echo types observed with these radars. The success of the classifier has been evaluated against its training dataset and by routine monitoring. The training data indicate that more than 90% of precipitation may be identified correctly. The echo types most difficult to distinguish from rainfall are smoke, chaff, and anomalous propagation ground and sea clutter. Their impact depends on their climatological frequency. Small quantities of frequently misclassified persistent echo (like permanent ground clutter or insects) can also cause quality control issues. The Bayes classifier is demonstrated to perform better than a simple threshold method, particularly for reducing misclassification of clutter as precipitation. However, the result depends on finding a balance between excluding precipitation and including erroneous echo. Unlike many single-polarization classifiers that are only intended to extract precipitation echo, the Bayes classifier also discriminates types of nonprecipitation echo. Therefore, the classifier provides the means to utilize clear air echo for applications like data assimilation, and the class information will permit separate data handling of different echo types.

Corresponding author address: S. J. Rennie, Bureau of Meteorology, GPO Box 1289, Melbourne VIC 3001, Australia. E-mail: s.rennie@bom.gov.au
Save