• Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, doi:10.1175/JPO-D-11-073.1.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., , Kanarska Y. , , and McWilliams J. C. , 2010: On the generation and evolution of nonlinear internal waves in the South China Sea. J. Geophys. Res., 115, C02012, doi:10.1029/2009JC005275.

    • Search Google Scholar
    • Export Citation
  • Chavanne, C., , Flament P. , , Carter G. , , Merrifield M. , , Luther D. , , Zaron E. , , and Gurgel K.-W. , 2010: The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part I: Observations and numerical predictions. J. Phys. Oceanogr., 40, 11551179, doi:10.1175/2010JPO4222.1.

    • Search Google Scholar
    • Export Citation
  • Chou, S. H., , Luther D. S. , , Guiles M. D. , , Carter G. S. , , and Decloedt T. , 2014: An empirical investigation of nonlinear energy transfer from M2 internal tide to diurnal wave motions in the Kauai Channel, Hawaii. Geophys. Res. Lett., 41, 505512, doi:10.1002/2013GL058320.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and Ray R. D. , 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, doi:10.1038/35015531.

    • Search Google Scholar
    • Export Citation
  • Fang, G., , Kwok Y.-K. , , Yu K. , , and Zhu Y. , 1999: Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont. Shelf Res., 19, 845869, doi:10.1016/S0278-4343(99)00002-3.

    • Search Google Scholar
    • Export Citation
  • Griffiths, S. D., , and Grimshaw R. H. J. , 2007: Internal tide generation at the continental shelf modeled using a modal decomposition: Two-dimensional results. J. Phys. Oceanogr., 37, 428451, doi:10.1175/JPO3068.1.

    • Search Google Scholar
    • Export Citation
  • Heaps, N. S., 1983: Development of a three-layered spectral model for the motion of a stratified shelf sea. I. Basis equations. Physical Oceanography of Coastal and Shelf Seas, B. Johns, Ed., Elsevier Oceanography Series, Vol. 35, Elsevier, 387–400, doi:10.1016/S0422-9894(08)70507-5.

    • Search Google Scholar
    • Export Citation
  • Katsumata, K., , Wijffels S. , , Steinberg C. R. , , and Brinkman R. , 2010: Variability of the semidiurnal internal tides observed on the Timor Shelf. J. Geophys. Res., 115, C10008, doi:10.1029/2009JC006071.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., , Nash J. D. , , and Kunze E. , 2010: Internal-tide energy over topography. J. Geophys. Res., 115, C06014, doi:10.1029/2009JC005618.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., , Alford M. H. , , Pinkel R. , , Lien R.-C. , , Yang Y. J. , , and Tang T.-Y. , 2011: The breaking and scattering of internal tides on a continental slope. J. Phys. Oceanogr., 41, 926945, doi:10.1175/2010JPO4500.1.

    • Search Google Scholar
    • Export Citation
  • Ma, B. B., , Lien R. , , and Ko D. S. , 2013: The variability of internal tides in the northern South China Sea. J. Oceanogr., 69, 619630, doi:10.1007/s10872-013-0198-0.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1997: Once again: Once again—Tidal friction. Prog. Oceanogr., 40, 735, doi:10.1016/S0079-6611(97)00021-9.

  • Niwa, Y., , and Hibiya T. , 2001: Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106, 22 44122 449, doi:10.1029/2000JC000770.

    • Search Google Scholar
    • Export Citation
  • Ross, L., , Perez-Santos I. , , Valle-Levinson A. , , and Schneider W. , 2014: Semidiurnal internal tides in a Patagonian fjord. Prog. Oceanogr., 129, 1934, doi:10.1016/j.pocean.2014.03.006.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tide to mixing along the Hawaiian ridge. Science, 301, 355357, doi:10.1126/science.1085837.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , Mooers C. N. K. , , and Robinson A. R. , 1985: Estimation of quasi-geostrophic modal amplitudes from XBT/CTD survey data. J. Atmos. Oceanic Technol., 2, 491507, doi:10.1175/1520-0426(1985)002<0491:EOQGMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tanaka, Y., , Yasuda I. , , Osafune S. , , Tanakab T. , , Nishiokad J. , , and Volkove Y. N. , 2014: Internal tides and turbulent mixing observed in Bussol Strait. Prog. Oceanogr., 126, 98108, doi:10.1016/j.pocean.2014.04.009.

    • Search Google Scholar
    • Export Citation
  • Terker, S. R., , Girton J. B. , , Kunze E. , , Klymak J. M. , , and Pinkel R. , 2014: Observations of the internal tide on the California continental margin near Monterey Bay. Cont. Shelf Res., 82, 6071, doi:10.1016/j.csr.2014.01.017.

    • Search Google Scholar
    • Export Citation
  • Webb, A. J., , and Pond S. , 1986: A modal decomposition of the internal tide in a deep, strongly stratified inlet: Knight Inlet, British Columbia. J. Geophys. Res., 91, 97219738, doi:10.1029/JC091iC08p09721.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., , Yin B. , , and Hou Y. , 2011: Multimodal structure of the internal tides on the continental shelf of the northwestern South China Sea. Estuar. Coastal Shelf Sci., 95, 178185, doi:10.1016/j.ecss.2011.08.026.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., , Yin B. , , Hou Y. , , and Xu Y. , 2013: Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. J. Geophys. Res., 118, 197211, doi:10.1029/2012JC008212.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., , Yin B. , , Hou Y. , , and Liu A. K. , 2014: Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. J. Mar. Syst., 134, 101112, doi:10.1016/j.jmarsys.2014.03.002.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., , Merrifield M. A. , , Carter G. S. , , Luther D. S. , , Levine M. D. , , and Boyd T. J. , 2011: Incoherent nature of M2 internal tides at the Hawaiian Ridge. J. Phys. Oceanogr., 41, 20212036, doi:10.1175/JPO-D-10-05009.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 7
PDF Downloads 15 15 9

Extraction of Internal Tidal Currents and Reconstruction of Full-Depth Tidal Currents from Mooring Observations

View More View Less
  • 1 Key Laboratory of Physical Oceanography, Ocean University of China, Ministry of Education, Qingdao, China
© Get Permissions
Restricted access

Abstract

To obtain internal tidal currents and full-depth tidal currents from limited mooring observations, a method is put forward combining harmonic analysis and modal decomposition. Harmonic analysis is used to separate tidal currents of different constituents, and modal decomposition is used to calculate full-depth tidal currents of each mode. By adding the barotropic tidal currents to all the baroclinic ones, the full-depth tidal currents of each constituent are reconstructed. The feasibility and accuracy of the proposed method is tested by twin experiments. Then, the method is used to extract tidal currents of each mode and to reconstruct full-depth tidal currents for M2 and K1 from a 3-month-long time series of acoustic Doppler current data observed at a station in the northern South China Sea. Results indicate that the total kinetic energy (KE) of M2 is 25% larger than that of K1. For M2, the first baroclinic mode is the dominant one, followed by the barotropic one, and the sum of these modes accounts for more than 90% of the total M2 KE. Tidal constituent K1 is dominated by the barotropic mode, which accounts for more than 90% of the total K1 KE.

Corresponding author address: Xian-Qing Lv, Key Laboratory of Physical Oceanography, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China. E-mail: xqinglv@ouc.edu.cn

Abstract

To obtain internal tidal currents and full-depth tidal currents from limited mooring observations, a method is put forward combining harmonic analysis and modal decomposition. Harmonic analysis is used to separate tidal currents of different constituents, and modal decomposition is used to calculate full-depth tidal currents of each mode. By adding the barotropic tidal currents to all the baroclinic ones, the full-depth tidal currents of each constituent are reconstructed. The feasibility and accuracy of the proposed method is tested by twin experiments. Then, the method is used to extract tidal currents of each mode and to reconstruct full-depth tidal currents for M2 and K1 from a 3-month-long time series of acoustic Doppler current data observed at a station in the northern South China Sea. Results indicate that the total kinetic energy (KE) of M2 is 25% larger than that of K1. For M2, the first baroclinic mode is the dominant one, followed by the barotropic one, and the sum of these modes accounts for more than 90% of the total M2 KE. Tidal constituent K1 is dominated by the barotropic mode, which accounts for more than 90% of the total K1 KE.

Corresponding author address: Xian-Qing Lv, Key Laboratory of Physical Oceanography, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China. E-mail: xqinglv@ouc.edu.cn
Save