• Adlerman, E. J., and Williams E. R. , 1996: Seasonal variation of the global electric circuit. J. Geophys. Res., 101, 29 67929 688, doi:10.1029/96JD01547.

    • Search Google Scholar
    • Export Citation
  • Bailey, J. C., and Blakeslee R. J. , 2006: Diurnal lightning distributions as observed by the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS). Eos, Trans. Amer. Geophys. Union, 87 (Fall Meeting Suppl.), Abstract AE33A-1050.

    • Search Google Scholar
    • Export Citation
  • Bateman, M. G., Stewart M. F. , Blakeslee R. J. , Podgorny S. J. , Christian H. J. , Mach D. M. , Bailey J. C. , and Daskar D. , 2007: A low‐noise, microprocessor‐controlled, internally digitizing rotating‐vane electric field mill for airborne platforms. J. Atmos. Oceanic Technol., 24, 12451255, doi:10.1175/JTECH2039.1.

    • Search Google Scholar
    • Export Citation
  • Blakeslee, R. J., and Coauthors, 1999: Diurnal lightning distribution as observed by the Optical Transient Detector (OTD). 11th International Conference on Atmospheric Electricity, H. J. Christian Jr., Ed., NASA Conf. Publ. NASA/CP‐1999‐209261, 742–745.

  • Blakeslee, R. J., Mach D. M. , Bateman M. G. , and Bailey J. C. , 2014: Seasonal variations in the lightning diurnal cycle and implications for the global electric circuit. Atmos. Res., 135, 228243, doi:10.1016/j.atmosres.2012.09.023.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., Christian H. J. Jr., Driscoll K. , Gadian A. M. , and Latham John , 2001: Determination of ice precipitation rates and thunderstorm anvil ice contents from satellite observations of lightning. Atmos. Res., 59–60, 217229, doi:10.1016/S0169-8095(01)00117-X.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2009: Passive microwave brightness temperatures as proxies for hailstorms. J. Appl. Meteor. Climatol., 48, 12811286, doi:10.1175/2009JAMC2125.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., Goodman S. J. , Boccippio D. J. , Zipser E. J. , and Nesbitt S. W. , 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566, doi:10.1175/MWR-2876.1.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and Peterson W. A. , 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.

    • Search Google Scholar
    • Export Citation
  • Driscoll, K. T., Blakeslee R. J. , and Baginski M. E. , 1992: A modeling study of time-averaged electric currents in the vicinity of thunderstorms. J. Geophys. Res., 97, 11 53511 551, doi:10.1029/92JD00857.

    • Search Google Scholar
    • Export Citation
  • Driscoll, K. T., Blakeslee R. J. , and Koshak W. J. , 1994: A time-averaged current analysis of a thunderstorm using ground-based measurements. J. Geophys. Res., 99, 10 65310 661, doi:10.1029/94JD00098.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Willett J. C. , 2007: Observed enhancement of reflectivity and the electric field in long-lived Florida anvils. Mon. Wea. Rev., 135, 33623380, doi:10.1175/MWR3484.1.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 2007: Electric fields, cloud microphysics, and reflectivity in anvils of Florida thunderstorms. J. Geophys. Res., 112, D11215, doi:10.1029/2006JD007550.

    • Search Google Scholar
    • Export Citation
  • Halverson, J., and Rickenbach T. , 2002: Environmental characteristics of convective systems during TRMM-LBA. Mon. Wea. Rev., 130, 14931509, doi:10.1175/1520-0493(2002)130<1493:ECOCSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Halverson, J., and Coauthors, 2007: NASA’s Tropical Cloud Systems and Processes Experiment. Bull. Amer. Meteor. Soc., 88, 867882, doi:10.1175/BAMS-88-6-867.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., Peirce J. L. , and Poe G. A. , 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781790, doi:10.1109/36.58964.

    • Search Google Scholar
    • Export Citation
  • Hwang, P., 2012: Foam and roughness effects on passive microwave remote sensing of the ocean. IEEE Trans. Geosci. Remote Sens., 50, 29782985, doi:10.1109/TGRS.2011.2177666.

    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., Saunders C. P. R. , and Hallet J. , 1983: Laboratory studies of the charging of soft hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609630, doi:10.1002/qj.49710946111.

    • Search Google Scholar
    • Export Citation
  • Kakar, R., Goodman M. , Hood R. , and Guillory A. , 2006: Overview of the Convection and Moisture Experiment (CAMEX). J. Atmos. Sci., 63, 518, doi:10.1175/JAS3607.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Rutledge S. A. , 2008: Kinematic, microphysical, and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000. J. Geophys. Res., 113, D08213, doi:10.1029/2006JD007709.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Williams E. , Zipser E. J. , and Burns G. , 2010: Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit. J. Atmos. Sci., 67, 309323, doi:10.1175/2009JAS3248.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Cecil D. , and Zipser E. J. , 2011: Relationships between lightning flash rates and passive microwave brightness temperatures at 85 and 37 GHz over the tropics and subtropics. J. Geophys. Res., 116, D23108, doi:10.1029/2011JD016463.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Cecil D. , Zipser E. J. , Kronfeld K. , and Robertson R. , 2012: Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics. J. Geophys. Res., 117, D06212, doi:10.1029/2011JD017123.

    • Search Google Scholar
    • Export Citation
  • Mach, D. M., and Koshak W. J. , 2007: General matrix inversion technique for the calibration of electric field sensor arrays on aircraft platforms. J. Atmos. Oceanic Technol., 24, 15761587, doi:10.1175/JTECH2080.1.

    • Search Google Scholar
    • Export Citation
  • Mach, D. M., Blakeslee R. J. , Bateman M. G. , and Bailey J. C. , 2009: Electric fields, conductivity, and estimated currents from aircraft overflights of electrified clouds. J. Geophys. Res., 114, D10204, doi:10.1029/2008JD011495.

    • Search Google Scholar
    • Export Citation
  • Mach, D. M., Blakeslee R. J. , Bateman M. G. , and Bailey J. C. , 2010: Comparisons of total currents based on storm location, polarity, and flash rates derived from high-altitude aircraft overflights. J. Geophys. Res., 115, D03201, doi:10.1029/2009JD012240.

    • Search Google Scholar
    • Export Citation
  • Mach, D. M., Blakeslee R. J. , and Bateman M. G. , 2011: Global electric circuit implications of combined aircraft storm electric current measurements and satellite-based diurnal lightning statistics. J. Geophys. Res., 116, D05201, doi:10.1029/2010JD014462.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., MacGorman D. R. , Ziegler C. L. , and Straka J. M. , 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110, D12101, doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Markson, R., 2007: The global circuit intensity: Its measurement and variation over the last 50 years. Bull. Amer. Meteor. Soc., 88, 223241, doi:10.1175/BAMS-88-2-223.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Radhakant S. , 1978: Radar precipitation maps as lightning indicators. J. Appl. Meteor., 17, 206212, doi:10.1175/1520-0450(1978)017<0206:RPMALI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., Zipser E. J. , and Cecil D. J. , 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peterson, M. J., 2011: Satellite and ground based observations of lightning flashes in the stratiform and anvil regions of convective systems. M.S. thesis, Dept. of Atmospheric Sciences, University of Utah, 139 pages.

  • Prigent, C., Defer E. , Pardo J. R. , Pearl C. , Rossow W. B. , and Pinty J.-P. , 2005: Relations of polarized scattering signatures observed by the TRMM Microwave Instrument with electrical processes in cloud systems. Geophys. Res. Lett., 32, L04810, doi:10.1029/2004GL022225.

    • Search Google Scholar
    • Export Citation
  • Reynolds, S. E., Brook M. , and Gourley M. F. , 1957: Thunderstorm charge separation. J. Meteor., 14, 426436, doi:10.1175/1520-0469(1957)014<0426:TCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and Peck S. L. , 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13 94913 956, doi:10.1029/97JD02644.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., Keith W. D. , and Mitzeva R. P. , 1991: The effect of liquid water content on thunderstorm charging. J. Geophys. Res., 96, 11 00711 017, doi:10.1029/91JD00970.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 2007: International global precipitation measurement (GPM) program and mission: An overview. Measuring Precipitation from Space, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Advances in Global Change Research, Vol. 28, 611–653, doi:10.1007/978-1-4020-5835-6_48.

  • Spencer, R. W., Goodman H. G. , and Hood R. E. , 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., Hood R. E. , LaFontaine F. J. , Smith E. A. , Platt R. , Galliano J. , Griffin V. L. , and Lobl E. , 1994: High-resolution imaging of rain systems with the Advanced Microwave Precipitation Radiometer. J. Atmos. Oceanic Technol., 11, 849857, doi:10.1175/1520-0426(1994)011<0849:HRIORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., Rust W. D. , Smull B. F. , and Marshall T. C. , 1998a: Electrical structure in thunderstorm convective regions: 1. Mesocale convective systems. J. Geophys. Res., 103, 14 05914 078, doi:10.1029/97JD03546.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., Rust W. D. , Smull B. F. , and Marshall T. C. , 1998b: Electrical structure in thunderstorm convective regions: 2. Isolated storms. J. Geophys. Res., 103, 14 07914 096, doi:10.1029/97JD03547.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Miyawaki K. , 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 10181025, doi:10.1175/1520-0469(2002)059<1018:ROREIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., Cecil D. J. , Zipser E. J. , and Nesbitt S. W. , 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802824, doi:10.1175/1520-0493(2002)130<0802:RPMALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Turk J. , and Bringi V. N. , 1991: Ice water path estimation and characterization using passive microwave radiometry. J. Appl. Meteor., 30, 14071421, doi:10.1175/1520-0450(1991)030<1407:IWPEAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whipple, F. J. W., and Scrase F. J. , 1936: Point Discharge in the Electric Field of the Earth: An Analysis of Continuous Records Obtained at Kew Observatory. Geophysical Memoirs, No. 68, Vol. 7, H. M. Stationery Office, 120.

  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94, 13 15113 167, doi:10.1029/JD094iD11p13151.

  • Williams, E. R., 2009: The global electrical circuit: A review. Atmos. Res., 91, 140152, doi:10.1016/j.atmosres.2008.05.018.

  • Wilson, C. T. R., 1921: Investigation on lightning discharges and on the electric field of thunderstorms. Philos. Trans. Roy. Soc. London, 221A, 73115, doi:10.1098/rsta.1921.0003.

    • Search Google Scholar
    • Export Citation
  • Wilson, C. T. R., 1924: The electric field of a thundercloud and some of its effects. Proc. Phys. Soc. London, 37, 32D, doi:10.1088/1478-7814/37/1/314.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 130 41 1
PDF Downloads 74 22 0

A Method of Estimating Electric Fields above Electrified Clouds from Passive Microwave Observations

View More View Less
  • 1 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
  • | 2 Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas
  • | 3 Science and Technology Institute, Universities Space Research Association, Huntsville, Alabama
  • | 4 National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

A unique dataset of coincident high-altitude passive microwave and electric field observations taken by the NASA ER-2 aircraft is used to assess the feasibility of estimating electric fields above electrified clouds using ubiquitous global and multidecadal satellite products. Once applied to a global dataset, such a product would provide a unique approach for diagnosing and monitoring the current sources of the global electric circuit (GEC).

In this study an algorithm has been developed that employs ice scattering signals from 37- and 85-GHz passive microwave observations to characterize the electric fields above clouds overflown by the ER-2 aircraft at nearly 20-km altitude. Electric field estimates produced by this passive microwave algorithm are then compared to electric field observations also taken by the aircraft to assess its potential future utility with satellite datasets. The algorithm is shown to estimate observed electric field strengths over intense convective clouds at least 71% (58%) of the time over land and 43% (40%) of the time over the ocean to within a factor of 2 from 85-GHz (37 GHz) passive microwave observations. Electric fields over weaker clouds can be estimated 58% (41%) of the time over land and 22% (8%) of the time over the ocean from 85-GHz (37 GHz) passive microwave observations. The accuracy of these estimates is limited by systematic errors in the observations along with other factors. Despite these sources of error, the algorithm can produce reasonable estimates of electric fields over carefully selected individual electrified clouds that differ from observations by less than 20 V m−1 for clouds that produce 200–400 V m−1 electric fields at 20 km.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Michael Peterson, Department of Atmospheric Sciences, University of Utah, 135 S. 1460 E., Rm. 819, Salt Lake City, UT 84112-0102. E-mail: michael.j.peterson@utah.edu

Abstract

A unique dataset of coincident high-altitude passive microwave and electric field observations taken by the NASA ER-2 aircraft is used to assess the feasibility of estimating electric fields above electrified clouds using ubiquitous global and multidecadal satellite products. Once applied to a global dataset, such a product would provide a unique approach for diagnosing and monitoring the current sources of the global electric circuit (GEC).

In this study an algorithm has been developed that employs ice scattering signals from 37- and 85-GHz passive microwave observations to characterize the electric fields above clouds overflown by the ER-2 aircraft at nearly 20-km altitude. Electric field estimates produced by this passive microwave algorithm are then compared to electric field observations also taken by the aircraft to assess its potential future utility with satellite datasets. The algorithm is shown to estimate observed electric field strengths over intense convective clouds at least 71% (58%) of the time over land and 43% (40%) of the time over the ocean to within a factor of 2 from 85-GHz (37 GHz) passive microwave observations. Electric fields over weaker clouds can be estimated 58% (41%) of the time over land and 22% (8%) of the time over the ocean from 85-GHz (37 GHz) passive microwave observations. The accuracy of these estimates is limited by systematic errors in the observations along with other factors. Despite these sources of error, the algorithm can produce reasonable estimates of electric fields over carefully selected individual electrified clouds that differ from observations by less than 20 V m−1 for clouds that produce 200–400 V m−1 electric fields at 20 km.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Michael Peterson, Department of Atmospheric Sciences, University of Utah, 135 S. 1460 E., Rm. 819, Salt Lake City, UT 84112-0102. E-mail: michael.j.peterson@utah.edu
Save