LAPS–LOWICE: A Real-Time System for the Assessment of Low-Level Icing Conditions and Their Effect on Wind Power

E. Gregow Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by E. Gregow in
Current site
Google Scholar
PubMed
Close
,
B. Bernstein Leading Edge Atmospherics, Longmont, Colorado

Search for other papers by B. Bernstein in
Current site
Google Scholar
PubMed
Close
,
I. Wittmeyer Leading Edge Atmospherics, Longmont, Colorado

Search for other papers by I. Wittmeyer in
Current site
Google Scholar
PubMed
Close
, and
J. Hirvonen Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by J. Hirvonen in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The wind power industry is highly sensitive to weather, and there is a clear impact on turbine efficiency associated with icing, which can cause significant power losses and even result in the total shutdown of wind farms. Therefore, accurate analyses and forecasts of wind- and icing-related meteorological variables are of great importance. To this end, the Local Analysis and Prediction System (LAPS)–LOWICE system has been developed to produce real-time, hourly estimates of the presence, intensity, and impacts of icing on wind power production. As part of this development, it became clear that power losses did not correlate well with measured icing loads but correlated reasonably well with the time history of icing rate in combination with ice loss due to melting, sublimation, and shedding.

Corresponding author address: Erik Gregow, Finnish Meteorological Institute, P.O. Box 503, FIN-00101 Helsinki, Finland. E-mail: erik.gregow@fmi.fi

Abstract

The wind power industry is highly sensitive to weather, and there is a clear impact on turbine efficiency associated with icing, which can cause significant power losses and even result in the total shutdown of wind farms. Therefore, accurate analyses and forecasts of wind- and icing-related meteorological variables are of great importance. To this end, the Local Analysis and Prediction System (LAPS)–LOWICE system has been developed to produce real-time, hourly estimates of the presence, intensity, and impacts of icing on wind power production. As part of this development, it became clear that power losses did not correlate well with measured icing loads but correlated reasonably well with the time history of icing rate in combination with ice loss due to melting, sublimation, and shedding.

Corresponding author address: Erik Gregow, Finnish Meteorological Institute, P.O. Box 503, FIN-00101 Helsinki, Finland. E-mail: erik.gregow@fmi.fi
Save
  • Albers, S. C., McGinley J. A. , Birkenheuer D. L. , and Smart J. R. , 1996: The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273287, doi:10.1175/1520-0434(1996)011<0273:TLAAPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., McDonough F. , Politovich M. K. , Brown B. G. , Ratvasky T. P. , Miller D. R. , Wolff C. A. , and Cunning G. , 2005: Current icing potential (CIP): Algorithm description and comparison with aircraft observations. J. Appl. Meteor., 44, 969986, doi:10.1175/JAM2246.1.

    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., McDonough F. , Wolff C. A. , Politovich M. K. , Cunning G. , Mueller S. , and Zednik S. , 2006: The new CIP icing severity product. 12th Conf. on Aviation, Range and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., P9.5 [Available online at http://ams.confex.com/ams/pdfpapers/102273.pdf.]

  • Bernstein, B. C., Gregow E. , Wittmeyer I. , and Hirvonen J. , 2011a: LOWICE: An example of the adaption of in-flight icing diagnosis concepts to the structural icing environment. Proc. SAE 2011 Int. Conf. on Aircraft and Engine Icing and Ground Deicing, Chicago, IL, SAI International and AIAA, 2011-38-0070. [Available online at http://papers.sae.org/2011-38-0070/.]

  • Bernstein, B. C., Wolff C. A. , and McDonough F. M. , 2011b: A regional comparison of icing conditions in boundary layer clouds. Proc. 2011 SAE Int. Conf. on Aircraft and Engine Icing and Ground Deicing, Chicago, IL, SAI International and AIAA, 2011-38-0021. [Available online at http://papers.sae.org/2011-38-0021/.]

  • Cattin, R., Kunz S. , Heimo A. , Russi G. , Russi M. , and Tiefgraber M. , 2007: Wind turbine ice throw studies in the Swiss Alps. Proc. European Wind Energy Conf. and Exhibition 2007, Milan, Italy, EWEA, BL3.269. [Available online at http://www.meteotest.ch/fileadmin/user_upload/Windenergie/pdfs/paper_ewec2007_cattin_final.pdf.]

  • Derrien, M., and Le Gléau H. , 2005: MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens., 26, 47074732, doi:10.1080/01431160500166128.

    • Search Google Scholar
    • Export Citation
  • Durstewitz, M., Dobschinski J. , and Khadiri-Yazami Z. , 2008: Wind power forecast accuracy under icing conditions—General approach, practical applications and options for considering effects of wind turbine icing. Proc. Winterwind 2008, Norrköping, Sweden, Swedish Wind Power Association [Available online at http://www.winterwind.se/2008/presentationer/17_Durstewitz_Winterwind_2008.pdf.]

  • Dybbroe, A., Karlsson K.-G. , and Thoss A. , 2005: NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part II: Tuning and validation. J. Appl. Meteor., 44, 5571, doi:10.1175/JAM-2189.1.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2014: IFS documentation CY40r1. Accessed 8 May 2014. [Available online at http://old.ecmwf.int/research/ifsdocs/CY40r1/>.]

  • EWEA, 2013: Wind power growth expected to slow in 2013, but recovery predicted. Accessed 6 April 2014. [Available online at http://www.ewea.org/blog/2013/04/wind-power-growth-expected-to-slow-in-2013-but-recovery-predicted/.]

  • Finstad, K. F., Lozowski E. P. , and Gates E. M. , 1988: A computational investigation of water droplet trajectories. J. Atmos. Oceanic Technol., 5, 160170, doi:10.1175/1520-0426(1988)005<0160:ACIOWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • GWEC, 2012: Global wind report 2012: Annual market update. 72 pp. [Available online at http://www.gwec.net/wp-content/uploads/2012/06/Annual_report_2012_LowRes.pdf.]

  • Haggerty, J. A., McDonough F. , Black J. , Landolt S. , Wolff C. , Mueller S. , Minnis P. , and Smith W. L. , 2008: Integration of satellite-derived cloud phase, cloud top height, and liquid water path into an operational aircraft icing nowcasting system. 13th Conf. on Aviation, Range and Aerospace Meteorology, New Orleans, LA, Amer. Meteor. Soc., 3.13. [Available online at https://ams.confex.com/ams/pdfpapers/131893.pdf.]

  • Huffman, G. J., and Norman G. A. Jr., 1988: The supercooled warm rain process and the specification of freezing precipitation. Mon. Wea. Rev., 116, 21722182, doi:10.1175/1520-0493(1988)116<2172:TSWRPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • ISO, 2001: Atmospheric icing of structures. International Organization for Standarization Copyright Office ISO 12494:2001, 56 pp. [Available online at http://www.iso.org/iso/catalogue_detail.htm?csnumber=32823.]

  • Koskinen, J. T., and Coauthors, 2011: The Helsinki Testbed: A mesoscale measurement, research, and service platform. Bull. Amer. Meteor. Soc., 92, 325342, doi:10.1175/2010BAMS2878.1.

    • Search Google Scholar
    • Export Citation
  • Le Bot, C., 2004: SIGMA: System of Icing Geographic Identification in Meteorology for Aviation. 11th Conf. on Aviation, Range and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., P6.5. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81704.htm.]

  • Mahoney, J., Henderson J. K. , Brown B. G. , Hart J. E. , Loughe A. , Fischer C. , and Sigren B. , 2002: The Real-Time Verification System (RTVS) and its application to aviation weather forecasting. Preprints, 10th Conf. on Aviation, Range and Aerospace Meteorology, Portland OR, Amer. Meteor. Soc., 9.8. [Available online at https://ams.confex.com/ams/13ac10av/techprogram/paper_40728.htm.]

  • Makkonen, L., 2000: Models for the growth of rime, glaze, icicles and wet snow on structures. Philos. Trans. Roy. Soc. London, 358A, 29132939, doi:10.1098/rsta.2000.0690.

    • Search Google Scholar
    • Export Citation
  • Marjaniemi, M., Holttinen H. , Keinanen J. , Holttinen E. , Makkonen L. , Peltola E. , Maki T. , and Petersen K. O. , 2000: Wind turbines in light icing conditions—Experiences of the Pori 8 MW wind farm. Proceedings of the BOREAS V Conference, B. Tammelin et al., Eds., Finnish Meteorological Institute, 13 pp.

  • Mughal, U. N., and Virk M. S. , 2013: Atmospheric icing sensors—An insight. SENSORCOMM 2013: The Seventh International Conference on Sensor Technologies and Applications, S. Yurish and M. S. Virk, Eds., IARIA, 191–199. [Available online at http://www.thinkmind.org/index.php?view=article&articleid=sensorcomm_2013_8_20_10053.]

  • Peltola, E., Marjaniemi M. , Kaas J. , and Aarnio E. , 1996: Pyhätunturi operational experiences. BOREAS III: Proceedings of an International Meeting, B. Tammelin et al., Eds., Finnish Meteorological Institute, 131146.

  • Politovich, M. K., and Bernstein B. C. , 1995: Production and depletion of supercooled liquid water in a Colorado winter storm. J. Appl. Meteor., 34, 26312648, doi:10.1175/1520-0450(1995)034<2631:PADOSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Portin, H. J., Komppula M. , Leskinen A. P. , Romakkaniemi S. , Laaksonen A. , and Lehtinen K. E. J. , 2009: Observations of aerosol–cloud interactions at the Puijo semi-urban measurement station. Boreal Env. Res., 14, 641653.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and Yau M. K. , 1989: A Short Course in Cloud Physics. 3rd ed. International Series in Natural Philosophy, Vol. 113, Butterworth Heinemann, 304 pp.

  • SAFNWC, 2013: Algorithm theoretical basis document for “cloud products” (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2). SAFNWC SAF/NWC/CDOP2/MFL/SCI/ATBD/01, Issue 3, Rev. 2.1, 87 pp. [Available online at http://www.nwcsaf.org/indexScientificDocumentation.html.]

  • Tafferner, A., Hauf T. , Leifeld C. , Hafner T. , Leykauf H. , and Voigt U. , 2003: ADWICE: Advanced Diagnosis and Warning System for Aircraft Icing Environments. Wea. Forecasting, 18, 184203, doi:10.1175/1520-0434(2003)018<0184:AADAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tammelin, B., Cavaliere M. , Holttinen H. , Morgan C. , Seifert H. , and Säntti K. , 2000: Wind energy production in cold climate (WECO). Finnish Meteorological Institute Rep. JOR3-CT95-0014, 38 pp. [Available online at http://cordis.europa.eu/documents/documentlibrary/47698271EN6.pdf.]

  • Tammelin, B., and Coauthors, 2005: Wind turbines in icing environment: Improvement of tools for siting, certification and operation. Finnish meteorological Institute NEW ICETOOLS Rep. 2005:6, 127 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1017 435 163
PDF Downloads 690 123 6