Abstract
A yet unexplained drift of (some) oxygen optodes during storage/transport and thus significant deviations from factory/laboratory calibrations have been a major handicap for autonomous oxygen observations. Optode drift appears to be systematic and is predominantly a slope effect due to reduced oxygen sensitivity. A small contribution comes from a reduced luminophore lifetime, which causes a small positive offset. A reliable in situ reference is essential to correct such a drift. Traditionally, this called for a ship-based reference cast, which poses some challenges for opportunistic float deployments. This study presents an easily implemented alternative using near-surface/in-air measurements of an Aanderaa optode on a 10-cm stalk and compares it to the more traditional approaches (factory, laboratory, and in situ deployment calibration). In-air samples show a systematic bias depending on the water saturation, which is likely caused by occasional submersions of the standard-height stalk optode. Linear regression of measured in-air supersaturation against in-water supersaturation (using ancillary meteorological data to define the saturation level) robustly removes this bias and thus provides a precise (0.2%) and accurate (1%) in situ correction that is available throughout the entire instrument’s lifetime.
Denotes Open Access content.
Publisher’s Note: This article was revised on 13 November 2015 to correct two typographic errors introduced during production—one in section 2d and the other in section 3b.