• Bais, A., and Coauthors, 2005: Intercomparison of solar UV direct irradiance spectral measurements at Izana in June 2005. Ultraviolet Ground- and Space-Based Measurements, Models, and Effects V, G. Bernhard et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5886), 588609, doi:10.1117/12.619925.

  • Bass, A. M., and Paur R. J. , 1985: The ultraviolet cross-sections of ozone: I. The measurements. Atmospheric Ozone: Proceedings of the Quadrennial Ozone Symposium, C. Z. Zerefos and A. Ghazi, Eds., Springer, 606610.

  • Bernhard, G., and Seckmeyer G. , 1999: Uncertainty of measurements of spectral solar UV irradiance. J. Geophys. Res., 104, 14 32114 345, doi:10.1029/1999JD900180.

    • Search Google Scholar
    • Export Citation
  • Blumthaler, M., Gröbner J. , Egli L. , and Nevas S. , 2013: A guide to measuring solar UV spectra using array spectroradiometers. AIP Conf. Proc., 1531, 805, doi:10.1063/1.4804892.

    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1973: A replacement for the Dobson spectrophotometer? Pure Appl. Geophys., 106–108, 919927, doi:10.1007/BF00881042.

  • CIE, 1998: Erythema reference action spectrum and standard erythema dose. Joint ISO/CIE Standard, ISO 17166:1999(E)/CIE S 007-1998, Commission Internationale de l’Eclairage, 8 pp.

  • CIE, 2006: Action spectrum for the production of previtamin D3 in human skin. CIE Tech. Rep. 174:2006, 12 pp.

  • Constantin, D.-E., Merlaud A. , Van Roozendael M. , Voiculescu M. , Fayt C. , Hendrick F. , Pinardi G. , and Georgescu L. , 2013: Measurements of tropospheric NO2 in Romania using a zenith-sky mobile DOAS system and comparisons with satellite observations. Sensors, 13, 39223940, doi:10.3390/s130303922.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1931: A photoelectric spectrophotometer for measuring the amount of atmospheric ozone. Proc. Phys. Soc., 43, 324339, doi:10.1088/0959-5309/43/3/308.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., and Harrison D. N. , 1926: Measurements of the amount of ozone in the earth’s atmosphere and its relation to other geophysical conditions. Proc. Roy. Soc. London, A110, 660693, doi:10.1098/rspa.1926.0040.

    • Search Google Scholar
    • Export Citation
  • Egli, L., Gröbner J. , and Shapiro A. , 2012: Development of a new high resolution extraterrestrial spectrum. Physikalisch-Meteorologische Observatorium Davos und Weltstrahlungszentrum Annual Rep. 2012, 35.

  • Ennis, C. A., Ed., 2011: Scientific assessment of ozone depletion: 2010; Pursuant to article 6 of the Montreal Protocol on Substances that Deplete the Ozone Layer. WMO Global Ozone Research and Monitoring Project Rep. 52, 516 pp.

  • Farman, J. C., Gardiner B. G. , and Shanklin J. D. , 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207210, doi:10.1038/315207a0.

    • Search Google Scholar
    • Export Citation
  • Fioletov, V. E., Kerr J. B. , McElroy C. T. , Wardle D. I. , Savastiouk V. , and Grajnar T. S. , 2005: The Brewer reference triad. Geophys. Res. Lett., 32, L20805, doi:10.1029/2005GL024244.

    • Search Google Scholar
    • Export Citation
  • Gröbner, J., Blumthaler M. , Kazadzis S. , Bais A. , Webb A. , Schreder J. , Seckmeyer G. , and Rembges D. , 2006: Quality assurance of spectral solar UV measurements: Results from 25 UV monitoring sites in Europe, 2002 to 2004. Metrologia, 43, S66S71, doi:10.1088/0026-1394/43/2/S14.

    • Search Google Scholar
    • Export Citation
  • Gröbner, J., Kouremeti N. , Soder R. , Wasser D. , de Coulon E. , Gyo M. , Dürig F. , and De Coulon E. , 2014: A precision solar spectroradiometer for spectral aerosol optical depth and solar irradiance measurements. UVnet Workshop 2014, Davos, Switzerland, PMOD/WRC. [Available online at http://projects.pmodwrc.ch/env03/images/documents_workshop/Groebner_et_al.pdf.]

  • Herman, J., Cede A. , Spinei E. , Mount G. , Tzortziou M. , and Abuhassan N. , 2009: NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation. J. Geophys. Res., 114, D13307, doi:10.1029/2009JD011848.

    • Search Google Scholar
    • Export Citation
  • Kouremeti, N., Bais A. , Kazadzis S. , Blumthaler M. , and Schmitt R. , 2008: Charge-coupled device spectrograph for direct solar irradiance and sky radiance measurements. Appl. Opt., 47, 15941607, doi:10.1364/AO.47.001594.

    • Search Google Scholar
    • Export Citation
  • Kramida, A., Ralchenko Yu. , Reader J. , and NIST ASD Team, 2012: NIST atomic spectra database, version 5.0.0. National Institute of Standards and Technology, accessed 23 July 2012. [Available online at http://www.nist.gov/pml/data/asd.cfm.]

  • Kreuter, A., and Blumthaler M. , 2009: Stray light correction for solar measurements using array spectrometers. Rev. Sci. Instrum., 80, 096108, doi:10.1063/1.3233897.

    • Search Google Scholar
    • Export Citation
  • Kreuter, A., Buras R. , Mayer B. , Webb A. , Kift R. , Bais A. , Kouremeti N. , and Blumthaler M. , 2014: Solar irradiance in the heterogeneous albedo environment of the Arctic coast: Measurements and a 3-D model study. Atmos. Chem. Phys., 14, 59896002, doi:10.5194/acp-14-5989-2014.

    • Search Google Scholar
    • Export Citation
  • Kurucz, R. L., 1994: Synthetic infrared spectra. Infrared Solar Physics: Proceedings of the 154th Symposium of the International Astronomical Union, D. M. Rabin, J. T. Jefferies, and C. Lindsey, Eds., International Astronomical Union Symposia, Vol. 154, Kluwer, 523–531.

  • Mayer, B., and Kylling A. , 2005: Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. Discuss., 5, 13191381, doi:10.5194/acpd-5-1319-2005.

    • Search Google Scholar
    • Export Citation
  • Nevas, S., Lindemann M. , Sperling A. , Teuber A. , and Maass R. , 2009: Colorimetry of LEDs with array spectroradiometers. MAPAN: J. Metrol. Soc. India, 24, 153162, doi:10.1007/s12647-009-0019-5.

    • Search Google Scholar
    • Export Citation
  • Nicolet, M., 1984: On the molecular scattering in the terrestrial atmosphere: An empirical formula for its calculation in the homosphere. Planet. Space Sci., 32, 14671468, doi:10.1016/0032-0633(84)90089-8.

    • Search Google Scholar
    • Export Citation
  • Pastel, M., Pommereau J.-P. , Goutail F. , Richter A. , Pazmiño A. , Ionov D. , and Portafaix T. , 2014: Construction of merged satellite total O3 and NO2 time series in the tropics for trend studies and evaluation by comparison to NDACC SAOZ measurements. Atmos. Meas. Tech., 7, 33373354, doi:10.5194/amt-7-3337-2014.

    • Search Google Scholar
    • Export Citation
  • Platt, U., and Stutz J. , 2008: Differential Optical Absorption Spectroscopy: Principles and Applications.Physics of Earth and Space Environments, Springer-Verlag, 598 pp.

  • Reda, I., and Andreas A. , 2003: Solar position algorithm for solar radiation applications. National Renewable Energy Laboratory Tech. Rep. NREL/TP-560-34302, 55 pp.

  • Rieder, H. E., and Coauthors, 2011: Extreme events in total ozone over the Northern mid-latitudes: An analysis based on long-term data sets from five European ground-based stations. Tellus B, 63, 860874, doi:10.1111/j.1600-0889.2011.00575.x.

    • Search Google Scholar
    • Export Citation
  • Savastiouk, V., and McElroy C. T. , 2005: Brewer spectrophotometer total ozone measurements made during the 1998 Middle Atmosphere Nitrogen Trend Assessment (MANTRA) campaign. Atmos.–Ocean, 43, 315324, doi:10.3137/ao.430403.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A. I., Schmutz W. , Schoell M. , Haberreiter M. , and Rozanov E. , 2010: NLTE solar irradiance modeling with the COSI code. Astron. Astrophys., 517, A48, doi:10.1051/0004-6361/200913987.

    • Search Google Scholar
    • Export Citation
  • Sharpe, M. R., and Irish D. , 1978: Stray light in diffraction grating monochromators. Opt. Acta, 25, 861893, doi:10.1080/713819858.

  • Shortis, M. R., Clarke T. A. , and Short T. , 1994: Comparison of some techniques for the subpixel location of discrete target images. Videometrics III, S. F. El-Hakim, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 2350), 239–250, doi:10.1117/12.189136.

  • Slaper, H., Blumthaler M. , Huber M. , and Kuik E. , 1995: Comparing ground-level spectrally resolved solar UV measurements using various instruments: A technique resolving effects of wavelength shift and slit width. Geophys. Res. Lett., 22, 27212724, doi:10.1029/95GL02824.

    • Search Google Scholar
    • Export Citation
  • Smedley, A. R. D., Webb A. R. , and Saunders C. P. R. , 2007: Application of a diode array spectroradiometer to measuring the spectral scattering properties of cloud types in a laboratory. Atmos. Chem. Phys., 7, 58035813, doi:10.5194/acp-7-5803-2007.

    • Search Google Scholar
    • Export Citation
  • Smedley, A. R. D., Rimmer J. S. , Moore D. , Toumi R. , and Webb A. R. , 2012: Total ozone and surface UV trends in the United Kingdom: 1979–2008. Int. J. Climatol., 32, 338–346, doi:10.1002/joc.2275.

    • Search Google Scholar
    • Export Citation
  • Staehelin, J., Kegel R. , and Harris N. R. P. , 1998: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1926–1996. J. Geophys. Res., 103, 83898399, doi:10.1029/97JD03650.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.]

  • Thuillier, G., Hersé M. , Labs D. , Foujols T. , Peetermans W. , Gillotay D. , Simon P. C. , and Mandel H. , 2003: The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and EURECA missions. Sol. Phys., 214, 122, doi:10.1023/A:1024048429145.

    • Search Google Scholar
    • Export Citation
  • Tzortziou, M., Herman J. R. , Cede A. , and Abuhassan N. , 2012: High precision, absolute total column ozone measurements from the Pandora spectrometer system: Comparisons with data from a Brewer double monochromator and Aura OMI. J. Geophys. Res., 117, D16303, doi:10.1029/2012JD017814.

    • Search Google Scholar
    • Export Citation
  • Ziegler, J. G., and Nichols N. B. , 1942: Optimum settings for automatic controllers. Trans. ASME, 64, 759768.

  • Zong, Y., Brown S. W. , Johnson B. C. , Lykke K. R. , and Ohno Y. , 2006: Simple spectral stray light correction method for array spectroradiometers. Appl. Opt., 45, 11111119, doi:10.1364/AO.45.001111.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 99 33 1
PDF Downloads 49 24 0

Assessment of a Dual-Channel Array Spectrometer for Ground-Based Ozone Retrievals

View More View Less
  • 1 Centre for Atmospheric Science, University of Manchester, Manchester, United Kingdom
Restricted access

Abstract

This study describes a dual-channel array spectrometer system designed to make high-frequency simultaneous spectral global irradiance and direct solar irradiance measurements covering the visible and ultraviolet wavelength ranges. The dual-channel nature of the instrument allows spectrally integrated quantities (e.g., erythema or vitamin D) to be calculated at a rate similar to broadband instruments while retrieving total column ozone (TCO) from the direct solar channel. The characterization and calibration of the instrument is discussed, with emphasis on temperature stabilization (<±0.01°C) and stray light removal. Focusing on the TCO retrieval from direct spectra, results are compared to a collocated Brewer spectrophotometer during the study period of May 2013–January 2014. Agreement for individual measurements made within 20 min of a reference Brewer direct sun observation on relatively clear example days is <1.5%. For all valid individual measurements, the study found an overall bias of 1.1 Dobson units (DU; 0.4%) and scatter of ±6.7 DU (2.2%) for retrievals obtained at airmass values < 4. A dependence on air mass of 6.3 DU (2.0%) per airmass unit is observed and a correlation of R2 = 0.954 is found for all individual measurements, although this is reduced to 0.908 for daily means. TCO retrievals are limited to airmass values < 4 primarily because of residual structure in the transmission spectrum that cannot be attributed to other trace gases. These results are encouraging and suggest that similar instrument designs could make a significant and relatively low-cost contribution to surface measurements of atmospheric radiation.

Denotes Open Access content.

Corresponding author address: Andrew R. D. Smedley, Centre for Atmospheric Science, University of Manchester, Simon Building, Oxford Road, Manchester M13 9PL, United Kingdom. E-mail: andrew.smedley@manchester.ac.uk

Abstract

This study describes a dual-channel array spectrometer system designed to make high-frequency simultaneous spectral global irradiance and direct solar irradiance measurements covering the visible and ultraviolet wavelength ranges. The dual-channel nature of the instrument allows spectrally integrated quantities (e.g., erythema or vitamin D) to be calculated at a rate similar to broadband instruments while retrieving total column ozone (TCO) from the direct solar channel. The characterization and calibration of the instrument is discussed, with emphasis on temperature stabilization (<±0.01°C) and stray light removal. Focusing on the TCO retrieval from direct spectra, results are compared to a collocated Brewer spectrophotometer during the study period of May 2013–January 2014. Agreement for individual measurements made within 20 min of a reference Brewer direct sun observation on relatively clear example days is <1.5%. For all valid individual measurements, the study found an overall bias of 1.1 Dobson units (DU; 0.4%) and scatter of ±6.7 DU (2.2%) for retrievals obtained at airmass values < 4. A dependence on air mass of 6.3 DU (2.0%) per airmass unit is observed and a correlation of R2 = 0.954 is found for all individual measurements, although this is reduced to 0.908 for daily means. TCO retrievals are limited to airmass values < 4 primarily because of residual structure in the transmission spectrum that cannot be attributed to other trace gases. These results are encouraging and suggest that similar instrument designs could make a significant and relatively low-cost contribution to surface measurements of atmospheric radiation.

Denotes Open Access content.

Corresponding author address: Andrew R. D. Smedley, Centre for Atmospheric Science, University of Manchester, Simon Building, Oxford Road, Manchester M13 9PL, United Kingdom. E-mail: andrew.smedley@manchester.ac.uk
Save