Assessment of a Dual-Channel Array Spectrometer for Ground-Based Ozone Retrievals

Andrew R. D. Smedley Centre for Atmospheric Science, University of Manchester, Manchester, United Kingdom

Search for other papers by Andrew R. D. Smedley in
Current site
Google Scholar
PubMed
Close
,
Richard C. Kift Centre for Atmospheric Science, University of Manchester, Manchester, United Kingdom

Search for other papers by Richard C. Kift in
Current site
Google Scholar
PubMed
Close
, and
Ann R. Webb Centre for Atmospheric Science, University of Manchester, Manchester, United Kingdom

Search for other papers by Ann R. Webb in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study describes a dual-channel array spectrometer system designed to make high-frequency simultaneous spectral global irradiance and direct solar irradiance measurements covering the visible and ultraviolet wavelength ranges. The dual-channel nature of the instrument allows spectrally integrated quantities (e.g., erythema or vitamin D) to be calculated at a rate similar to broadband instruments while retrieving total column ozone (TCO) from the direct solar channel. The characterization and calibration of the instrument is discussed, with emphasis on temperature stabilization (<±0.01°C) and stray light removal. Focusing on the TCO retrieval from direct spectra, results are compared to a collocated Brewer spectrophotometer during the study period of May 2013–January 2014. Agreement for individual measurements made within 20 min of a reference Brewer direct sun observation on relatively clear example days is <1.5%. For all valid individual measurements, the study found an overall bias of 1.1 Dobson units (DU; 0.4%) and scatter of ±6.7 DU (2.2%) for retrievals obtained at airmass values < 4. A dependence on air mass of 6.3 DU (2.0%) per airmass unit is observed and a correlation of R2 = 0.954 is found for all individual measurements, although this is reduced to 0.908 for daily means. TCO retrievals are limited to airmass values < 4 primarily because of residual structure in the transmission spectrum that cannot be attributed to other trace gases. These results are encouraging and suggest that similar instrument designs could make a significant and relatively low-cost contribution to surface measurements of atmospheric radiation.

Denotes Open Access content.

Corresponding author address: Andrew R. D. Smedley, Centre for Atmospheric Science, University of Manchester, Simon Building, Oxford Road, Manchester M13 9PL, United Kingdom. E-mail: andrew.smedley@manchester.ac.uk

Abstract

This study describes a dual-channel array spectrometer system designed to make high-frequency simultaneous spectral global irradiance and direct solar irradiance measurements covering the visible and ultraviolet wavelength ranges. The dual-channel nature of the instrument allows spectrally integrated quantities (e.g., erythema or vitamin D) to be calculated at a rate similar to broadband instruments while retrieving total column ozone (TCO) from the direct solar channel. The characterization and calibration of the instrument is discussed, with emphasis on temperature stabilization (<±0.01°C) and stray light removal. Focusing on the TCO retrieval from direct spectra, results are compared to a collocated Brewer spectrophotometer during the study period of May 2013–January 2014. Agreement for individual measurements made within 20 min of a reference Brewer direct sun observation on relatively clear example days is <1.5%. For all valid individual measurements, the study found an overall bias of 1.1 Dobson units (DU; 0.4%) and scatter of ±6.7 DU (2.2%) for retrievals obtained at airmass values < 4. A dependence on air mass of 6.3 DU (2.0%) per airmass unit is observed and a correlation of R2 = 0.954 is found for all individual measurements, although this is reduced to 0.908 for daily means. TCO retrievals are limited to airmass values < 4 primarily because of residual structure in the transmission spectrum that cannot be attributed to other trace gases. These results are encouraging and suggest that similar instrument designs could make a significant and relatively low-cost contribution to surface measurements of atmospheric radiation.

Denotes Open Access content.

Corresponding author address: Andrew R. D. Smedley, Centre for Atmospheric Science, University of Manchester, Simon Building, Oxford Road, Manchester M13 9PL, United Kingdom. E-mail: andrew.smedley@manchester.ac.uk
Save
  • Bais, A., and Coauthors, 2005: Intercomparison of solar UV direct irradiance spectral measurements at Izana in June 2005. Ultraviolet Ground- and Space-Based Measurements, Models, and Effects V, G. Bernhard et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5886), 588609, doi:10.1117/12.619925.

  • Bass, A. M., and Paur R. J. , 1985: The ultraviolet cross-sections of ozone: I. The measurements. Atmospheric Ozone: Proceedings of the Quadrennial Ozone Symposium, C. Z. Zerefos and A. Ghazi, Eds., Springer, 606610.

  • Bernhard, G., and Seckmeyer G. , 1999: Uncertainty of measurements of spectral solar UV irradiance. J. Geophys. Res., 104, 14 32114 345, doi:10.1029/1999JD900180.

    • Search Google Scholar
    • Export Citation
  • Blumthaler, M., Gröbner J. , Egli L. , and Nevas S. , 2013: A guide to measuring solar UV spectra using array spectroradiometers. AIP Conf. Proc., 1531, 805, doi:10.1063/1.4804892.

    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1973: A replacement for the Dobson spectrophotometer? Pure Appl. Geophys., 106–108, 919927, doi:10.1007/BF00881042.

  • CIE, 1998: Erythema reference action spectrum and standard erythema dose. Joint ISO/CIE Standard, ISO 17166:1999(E)/CIE S 007-1998, Commission Internationale de l’Eclairage, 8 pp.

  • CIE, 2006: Action spectrum for the production of previtamin D3 in human skin. CIE Tech. Rep. 174:2006, 12 pp.

  • Constantin, D.-E., Merlaud A. , Van Roozendael M. , Voiculescu M. , Fayt C. , Hendrick F. , Pinardi G. , and Georgescu L. , 2013: Measurements of tropospheric NO2 in Romania using a zenith-sky mobile DOAS system and comparisons with satellite observations. Sensors, 13, 39223940, doi:10.3390/s130303922.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1931: A photoelectric spectrophotometer for measuring the amount of atmospheric ozone. Proc. Phys. Soc., 43, 324339, doi:10.1088/0959-5309/43/3/308.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., and Harrison D. N. , 1926: Measurements of the amount of ozone in the earth’s atmosphere and its relation to other geophysical conditions. Proc. Roy. Soc. London, A110, 660693, doi:10.1098/rspa.1926.0040.

    • Search Google Scholar
    • Export Citation
  • Egli, L., Gröbner J. , and Shapiro A. , 2012: Development of a new high resolution extraterrestrial spectrum. Physikalisch-Meteorologische Observatorium Davos und Weltstrahlungszentrum Annual Rep. 2012, 35.

  • Ennis, C. A., Ed., 2011: Scientific assessment of ozone depletion: 2010; Pursuant to article 6 of the Montreal Protocol on Substances that Deplete the Ozone Layer. WMO Global Ozone Research and Monitoring Project Rep. 52, 516 pp.

  • Farman, J. C., Gardiner B. G. , and Shanklin J. D. , 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207210, doi:10.1038/315207a0.

    • Search Google Scholar
    • Export Citation
  • Fioletov, V. E., Kerr J. B. , McElroy C. T. , Wardle D. I. , Savastiouk V. , and Grajnar T. S. , 2005: The Brewer reference triad. Geophys. Res. Lett., 32, L20805, doi:10.1029/2005GL024244.

    • Search Google Scholar
    • Export Citation
  • Gröbner, J., Blumthaler M. , Kazadzis S. , Bais A. , Webb A. , Schreder J. , Seckmeyer G. , and Rembges D. , 2006: Quality assurance of spectral solar UV measurements: Results from 25 UV monitoring sites in Europe, 2002 to 2004. Metrologia, 43, S66S71, doi:10.1088/0026-1394/43/2/S14.

    • Search Google Scholar
    • Export Citation
  • Gröbner, J., Kouremeti N. , Soder R. , Wasser D. , de Coulon E. , Gyo M. , Dürig F. , and De Coulon E. , 2014: A precision solar spectroradiometer for spectral aerosol optical depth and solar irradiance measurements. UVnet Workshop 2014, Davos, Switzerland, PMOD/WRC. [Available online at http://projects.pmodwrc.ch/env03/images/documents_workshop/Groebner_et_al.pdf.]

  • Herman, J., Cede A. , Spinei E. , Mount G. , Tzortziou M. , and Abuhassan N. , 2009: NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation. J. Geophys. Res., 114, D13307, doi:10.1029/2009JD011848.

    • Search Google Scholar
    • Export Citation
  • Kouremeti, N., Bais A. , Kazadzis S. , Blumthaler M. , and Schmitt R. , 2008: Charge-coupled device spectrograph for direct solar irradiance and sky radiance measurements. Appl. Opt., 47, 15941607, doi:10.1364/AO.47.001594.

    • Search Google Scholar
    • Export Citation
  • Kramida, A., Ralchenko Yu. , Reader J. , and NIST ASD Team, 2012: NIST atomic spectra database, version 5.0.0. National Institute of Standards and Technology, accessed 23 July 2012. [Available online at http://www.nist.gov/pml/data/asd.cfm.]

  • Kreuter, A., and Blumthaler M. , 2009: Stray light correction for solar measurements using array spectrometers. Rev. Sci. Instrum., 80, 096108, doi:10.1063/1.3233897.

    • Search Google Scholar
    • Export Citation
  • Kreuter, A., Buras R. , Mayer B. , Webb A. , Kift R. , Bais A. , Kouremeti N. , and Blumthaler M. , 2014: Solar irradiance in the heterogeneous albedo environment of the Arctic coast: Measurements and a 3-D model study. Atmos. Chem. Phys., 14, 59896002, doi:10.5194/acp-14-5989-2014.

    • Search Google Scholar
    • Export Citation
  • Kurucz, R. L., 1994: Synthetic infrared spectra. Infrared Solar Physics: Proceedings of the 154th Symposium of the International Astronomical Union, D. M. Rabin, J. T. Jefferies, and C. Lindsey, Eds., International Astronomical Union Symposia, Vol. 154, Kluwer, 523–531.

  • Mayer, B., and Kylling A. , 2005: Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. Discuss., 5, 13191381, doi:10.5194/acpd-5-1319-2005.

    • Search Google Scholar
    • Export Citation
  • Nevas, S., Lindemann M. , Sperling A. , Teuber A. , and Maass R. , 2009: Colorimetry of LEDs with array spectroradiometers. MAPAN: J. Metrol. Soc. India, 24, 153162, doi:10.1007/s12647-009-0019-5.

    • Search Google Scholar
    • Export Citation
  • Nicolet, M., 1984: On the molecular scattering in the terrestrial atmosphere: An empirical formula for its calculation in the homosphere. Planet. Space Sci., 32, 14671468, doi:10.1016/0032-0633(84)90089-8.

    • Search Google Scholar
    • Export Citation
  • Pastel, M., Pommereau J.-P. , Goutail F. , Richter A. , Pazmiño A. , Ionov D. , and Portafaix T. , 2014: Construction of merged satellite total O3 and NO2 time series in the tropics for trend studies and evaluation by comparison to NDACC SAOZ measurements. Atmos. Meas. Tech., 7, 33373354, doi:10.5194/amt-7-3337-2014.

    • Search Google Scholar
    • Export Citation
  • Platt, U., and Stutz J. , 2008: Differential Optical Absorption Spectroscopy: Principles and Applications.Physics of Earth and Space Environments, Springer-Verlag, 598 pp.

  • Reda, I., and Andreas A. , 2003: Solar position algorithm for solar radiation applications. National Renewable Energy Laboratory Tech. Rep. NREL/TP-560-34302, 55 pp.

  • Rieder, H. E., and Coauthors, 2011: Extreme events in total ozone over the Northern mid-latitudes: An analysis based on long-term data sets from five European ground-based stations. Tellus B, 63, 860874, doi:10.1111/j.1600-0889.2011.00575.x.

    • Search Google Scholar
    • Export Citation
  • Savastiouk, V., and McElroy C. T. , 2005: Brewer spectrophotometer total ozone measurements made during the 1998 Middle Atmosphere Nitrogen Trend Assessment (MANTRA) campaign. Atmos.–Ocean, 43, 315324, doi:10.3137/ao.430403.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A. I., Schmutz W. , Schoell M. , Haberreiter M. , and Rozanov E. , 2010: NLTE solar irradiance modeling with the COSI code. Astron. Astrophys., 517, A48, doi:10.1051/0004-6361/200913987.

    • Search Google Scholar
    • Export Citation
  • Sharpe, M. R., and Irish D. , 1978: Stray light in diffraction grating monochromators. Opt. Acta, 25, 861893, doi:10.1080/713819858.

  • Shortis, M. R., Clarke T. A. , and Short T. , 1994: Comparison of some techniques for the subpixel location of discrete target images. Videometrics III, S. F. El-Hakim, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 2350), 239–250, doi:10.1117/12.189136.

  • Slaper, H., Blumthaler M. , Huber M. , and Kuik E. , 1995: Comparing ground-level spectrally resolved solar UV measurements using various instruments: A technique resolving effects of wavelength shift and slit width. Geophys. Res. Lett., 22, 27212724, doi:10.1029/95GL02824.

    • Search Google Scholar
    • Export Citation
  • Smedley, A. R. D., Webb A. R. , and Saunders C. P. R. , 2007: Application of a diode array spectroradiometer to measuring the spectral scattering properties of cloud types in a laboratory. Atmos. Chem. Phys., 7, 58035813, doi:10.5194/acp-7-5803-2007.

    • Search Google Scholar
    • Export Citation
  • Smedley, A. R. D., Rimmer J. S. , Moore D. , Toumi R. , and Webb A. R. , 2012: Total ozone and surface UV trends in the United Kingdom: 1979–2008. Int. J. Climatol., 32, 338–346, doi:10.1002/joc.2275.

    • Search Google Scholar
    • Export Citation
  • Staehelin, J., Kegel R. , and Harris N. R. P. , 1998: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1926–1996. J. Geophys. Res., 103, 83898399, doi:10.1029/97JD03650.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.]

  • Thuillier, G., Hersé M. , Labs D. , Foujols T. , Peetermans W. , Gillotay D. , Simon P. C. , and Mandel H. , 2003: The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and EURECA missions. Sol. Phys., 214, 122, doi:10.1023/A:1024048429145.

    • Search Google Scholar
    • Export Citation
  • Tzortziou, M., Herman J. R. , Cede A. , and Abuhassan N. , 2012: High precision, absolute total column ozone measurements from the Pandora spectrometer system: Comparisons with data from a Brewer double monochromator and Aura OMI. J. Geophys. Res., 117, D16303, doi:10.1029/2012JD017814.

    • Search Google Scholar
    • Export Citation
  • Ziegler, J. G., and Nichols N. B. , 1942: Optimum settings for automatic controllers. Trans. ASME, 64, 759768.

  • Zong, Y., Brown S. W. , Johnson B. C. , Lykke K. R. , and Ohno Y. , 2006: Simple spectral stray light correction method for array spectroradiometers. Appl. Opt., 45, 11111119, doi:10.1364/AO.45.001111.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 432 249 78
PDF Downloads 120 24 3